Cargando…
Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule
In the present study, we quantitatively evaluated dielectric breakdown in silicon-based micro- and nanofluidic devices under practical electrophoretic conditions by changing the thickness of the insulating layer. At higher buffer concentration, a silicon nanofluidic device with a 100 nm or 250 nm si...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187859/ https://www.ncbi.nlm.nih.gov/pubmed/30424113 http://dx.doi.org/10.3390/mi9040180 |
_version_ | 1783363101896212480 |
---|---|
author | Sano, Mamiko Kaji, Noritada Wu, Qiong Naito, Toyohiro Yasui, Takao Taniguchi, Masateru Kawai, Tomoji Baba, Yoshinobu |
author_facet | Sano, Mamiko Kaji, Noritada Wu, Qiong Naito, Toyohiro Yasui, Takao Taniguchi, Masateru Kawai, Tomoji Baba, Yoshinobu |
author_sort | Sano, Mamiko |
collection | PubMed |
description | In the present study, we quantitatively evaluated dielectric breakdown in silicon-based micro- and nanofluidic devices under practical electrophoretic conditions by changing the thickness of the insulating layer. At higher buffer concentration, a silicon nanofluidic device with a 100 nm or 250 nm silicon dioxide layer tolerated dielectric breakdown up to ca. 10 V/cm, thereby allowing successful electrophoretic migration of a single DNA molecule through a nanochannel. The observed DNA migration behavior suggested that parameters, such as thickness of the insulating layer, tolerance of dielectric breakdown, and bonding status of silicon and glass substrate, should be optimized to achieve successful electrophoretic transport of a DNA molecule through a nanopore for nanopore-based DNA sequencing applications. |
format | Online Article Text |
id | pubmed-6187859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61878592018-11-01 Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule Sano, Mamiko Kaji, Noritada Wu, Qiong Naito, Toyohiro Yasui, Takao Taniguchi, Masateru Kawai, Tomoji Baba, Yoshinobu Micromachines (Basel) Article In the present study, we quantitatively evaluated dielectric breakdown in silicon-based micro- and nanofluidic devices under practical electrophoretic conditions by changing the thickness of the insulating layer. At higher buffer concentration, a silicon nanofluidic device with a 100 nm or 250 nm silicon dioxide layer tolerated dielectric breakdown up to ca. 10 V/cm, thereby allowing successful electrophoretic migration of a single DNA molecule through a nanochannel. The observed DNA migration behavior suggested that parameters, such as thickness of the insulating layer, tolerance of dielectric breakdown, and bonding status of silicon and glass substrate, should be optimized to achieve successful electrophoretic transport of a DNA molecule through a nanopore for nanopore-based DNA sequencing applications. MDPI 2018-04-13 /pmc/articles/PMC6187859/ /pubmed/30424113 http://dx.doi.org/10.3390/mi9040180 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sano, Mamiko Kaji, Noritada Wu, Qiong Naito, Toyohiro Yasui, Takao Taniguchi, Masateru Kawai, Tomoji Baba, Yoshinobu Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule |
title | Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule |
title_full | Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule |
title_fullStr | Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule |
title_full_unstemmed | Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule |
title_short | Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule |
title_sort | quantitative evaluation of dielectric breakdown of silicon micro- and nanofluidic devices for electrophoretic transport of a single dna molecule |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187859/ https://www.ncbi.nlm.nih.gov/pubmed/30424113 http://dx.doi.org/10.3390/mi9040180 |
work_keys_str_mv | AT sanomamiko quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule AT kajinoritada quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule AT wuqiong quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule AT naitotoyohiro quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule AT yasuitakao quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule AT taniguchimasateru quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule AT kawaitomoji quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule AT babayoshinobu quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule |