Cargando…

Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule

In the present study, we quantitatively evaluated dielectric breakdown in silicon-based micro- and nanofluidic devices under practical electrophoretic conditions by changing the thickness of the insulating layer. At higher buffer concentration, a silicon nanofluidic device with a 100 nm or 250 nm si...

Descripción completa

Detalles Bibliográficos
Autores principales: Sano, Mamiko, Kaji, Noritada, Wu, Qiong, Naito, Toyohiro, Yasui, Takao, Taniguchi, Masateru, Kawai, Tomoji, Baba, Yoshinobu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187859/
https://www.ncbi.nlm.nih.gov/pubmed/30424113
http://dx.doi.org/10.3390/mi9040180
_version_ 1783363101896212480
author Sano, Mamiko
Kaji, Noritada
Wu, Qiong
Naito, Toyohiro
Yasui, Takao
Taniguchi, Masateru
Kawai, Tomoji
Baba, Yoshinobu
author_facet Sano, Mamiko
Kaji, Noritada
Wu, Qiong
Naito, Toyohiro
Yasui, Takao
Taniguchi, Masateru
Kawai, Tomoji
Baba, Yoshinobu
author_sort Sano, Mamiko
collection PubMed
description In the present study, we quantitatively evaluated dielectric breakdown in silicon-based micro- and nanofluidic devices under practical electrophoretic conditions by changing the thickness of the insulating layer. At higher buffer concentration, a silicon nanofluidic device with a 100 nm or 250 nm silicon dioxide layer tolerated dielectric breakdown up to ca. 10 V/cm, thereby allowing successful electrophoretic migration of a single DNA molecule through a nanochannel. The observed DNA migration behavior suggested that parameters, such as thickness of the insulating layer, tolerance of dielectric breakdown, and bonding status of silicon and glass substrate, should be optimized to achieve successful electrophoretic transport of a DNA molecule through a nanopore for nanopore-based DNA sequencing applications.
format Online
Article
Text
id pubmed-6187859
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-61878592018-11-01 Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule Sano, Mamiko Kaji, Noritada Wu, Qiong Naito, Toyohiro Yasui, Takao Taniguchi, Masateru Kawai, Tomoji Baba, Yoshinobu Micromachines (Basel) Article In the present study, we quantitatively evaluated dielectric breakdown in silicon-based micro- and nanofluidic devices under practical electrophoretic conditions by changing the thickness of the insulating layer. At higher buffer concentration, a silicon nanofluidic device with a 100 nm or 250 nm silicon dioxide layer tolerated dielectric breakdown up to ca. 10 V/cm, thereby allowing successful electrophoretic migration of a single DNA molecule through a nanochannel. The observed DNA migration behavior suggested that parameters, such as thickness of the insulating layer, tolerance of dielectric breakdown, and bonding status of silicon and glass substrate, should be optimized to achieve successful electrophoretic transport of a DNA molecule through a nanopore for nanopore-based DNA sequencing applications. MDPI 2018-04-13 /pmc/articles/PMC6187859/ /pubmed/30424113 http://dx.doi.org/10.3390/mi9040180 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sano, Mamiko
Kaji, Noritada
Wu, Qiong
Naito, Toyohiro
Yasui, Takao
Taniguchi, Masateru
Kawai, Tomoji
Baba, Yoshinobu
Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule
title Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule
title_full Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule
title_fullStr Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule
title_full_unstemmed Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule
title_short Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule
title_sort quantitative evaluation of dielectric breakdown of silicon micro- and nanofluidic devices for electrophoretic transport of a single dna molecule
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187859/
https://www.ncbi.nlm.nih.gov/pubmed/30424113
http://dx.doi.org/10.3390/mi9040180
work_keys_str_mv AT sanomamiko quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
AT kajinoritada quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
AT wuqiong quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
AT naitotoyohiro quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
AT yasuitakao quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
AT taniguchimasateru quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
AT kawaitomoji quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule
AT babayoshinobu quantitativeevaluationofdielectricbreakdownofsiliconmicroandnanofluidicdevicesforelectrophoretictransportofasinglednamolecule