Cargando…
Air Trapping Mechanism in Artificial Salvinia-Like Micro-Hairs Fabricated via Direct Laser Lithography
Salvinia leaves represent an extraordinary example of how nature found a strategy for the long term retainment of air, and thus oxygen, on a surface, the so-called ‘Salvinia effect’, thanks to the peculiar three-dimensional and hierarchical shape of the hairs covering the leaves. Here, starting from...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187866/ https://www.ncbi.nlm.nih.gov/pubmed/30400556 http://dx.doi.org/10.3390/mi8120366 |
_version_ | 1783363103555059712 |
---|---|
author | Tricinci, Omar Terencio, Tercio Pugno, Nicola M. Greco, Francesco Mazzolai, Barbara Mattoli, Virgilio |
author_facet | Tricinci, Omar Terencio, Tercio Pugno, Nicola M. Greco, Francesco Mazzolai, Barbara Mattoli, Virgilio |
author_sort | Tricinci, Omar |
collection | PubMed |
description | Salvinia leaves represent an extraordinary example of how nature found a strategy for the long term retainment of air, and thus oxygen, on a surface, the so-called ‘Salvinia effect’, thanks to the peculiar three-dimensional and hierarchical shape of the hairs covering the leaves. Here, starting from the natural model, we have microfabricated hairs inspired by those present on the Salvinia molesta leaves, by means of direct laser lithography. Artificial hairs, like their natural counterpart, are composed of a stalk and a crown-like head, and have been reproduced in the microscale since this ensures, if using a proper design, an air-retaining behavior even if the bulk structural material is hydrophilic. We have investigated the capability of air retainment inside the heads of the hairs that can last up to 100 h, demonstrating the stability of the phenomenon. For a given dimension of the head, the greater the number of filaments, the greater the amount of air that can be trapped inside the heads since the increase in the number of solid–air interfaces able to pin the liquid phase. For this reason, such type of pattern could be used for the fabrication of surfaces for controlled gas retainment and gas release in liquid phases. The range of applications would be quite large, including industrial, medical, and biological fields. |
format | Online Article Text |
id | pubmed-6187866 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61878662018-11-01 Air Trapping Mechanism in Artificial Salvinia-Like Micro-Hairs Fabricated via Direct Laser Lithography Tricinci, Omar Terencio, Tercio Pugno, Nicola M. Greco, Francesco Mazzolai, Barbara Mattoli, Virgilio Micromachines (Basel) Article Salvinia leaves represent an extraordinary example of how nature found a strategy for the long term retainment of air, and thus oxygen, on a surface, the so-called ‘Salvinia effect’, thanks to the peculiar three-dimensional and hierarchical shape of the hairs covering the leaves. Here, starting from the natural model, we have microfabricated hairs inspired by those present on the Salvinia molesta leaves, by means of direct laser lithography. Artificial hairs, like their natural counterpart, are composed of a stalk and a crown-like head, and have been reproduced in the microscale since this ensures, if using a proper design, an air-retaining behavior even if the bulk structural material is hydrophilic. We have investigated the capability of air retainment inside the heads of the hairs that can last up to 100 h, demonstrating the stability of the phenomenon. For a given dimension of the head, the greater the number of filaments, the greater the amount of air that can be trapped inside the heads since the increase in the number of solid–air interfaces able to pin the liquid phase. For this reason, such type of pattern could be used for the fabrication of surfaces for controlled gas retainment and gas release in liquid phases. The range of applications would be quite large, including industrial, medical, and biological fields. MDPI 2017-12-20 /pmc/articles/PMC6187866/ /pubmed/30400556 http://dx.doi.org/10.3390/mi8120366 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tricinci, Omar Terencio, Tercio Pugno, Nicola M. Greco, Francesco Mazzolai, Barbara Mattoli, Virgilio Air Trapping Mechanism in Artificial Salvinia-Like Micro-Hairs Fabricated via Direct Laser Lithography |
title | Air Trapping Mechanism in Artificial Salvinia-Like Micro-Hairs Fabricated via Direct Laser Lithography |
title_full | Air Trapping Mechanism in Artificial Salvinia-Like Micro-Hairs Fabricated via Direct Laser Lithography |
title_fullStr | Air Trapping Mechanism in Artificial Salvinia-Like Micro-Hairs Fabricated via Direct Laser Lithography |
title_full_unstemmed | Air Trapping Mechanism in Artificial Salvinia-Like Micro-Hairs Fabricated via Direct Laser Lithography |
title_short | Air Trapping Mechanism in Artificial Salvinia-Like Micro-Hairs Fabricated via Direct Laser Lithography |
title_sort | air trapping mechanism in artificial salvinia-like micro-hairs fabricated via direct laser lithography |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187866/ https://www.ncbi.nlm.nih.gov/pubmed/30400556 http://dx.doi.org/10.3390/mi8120366 |
work_keys_str_mv | AT tricinciomar airtrappingmechanisminartificialsalvinialikemicrohairsfabricatedviadirectlaserlithography AT terenciotercio airtrappingmechanisminartificialsalvinialikemicrohairsfabricatedviadirectlaserlithography AT pugnonicolam airtrappingmechanisminartificialsalvinialikemicrohairsfabricatedviadirectlaserlithography AT grecofrancesco airtrappingmechanisminartificialsalvinialikemicrohairsfabricatedviadirectlaserlithography AT mazzolaibarbara airtrappingmechanisminartificialsalvinialikemicrohairsfabricatedviadirectlaserlithography AT mattolivirgilio airtrappingmechanisminartificialsalvinialikemicrohairsfabricatedviadirectlaserlithography |