Cargando…
Detecting Multiple Change Points Using Adaptive Regression Splines With Application to Neural Recordings
Time series, as frequently the case in neuroscience, are rarely stationary, but often exhibit abrupt changes due to attractor transitions or bifurcations in the dynamical systems producing them. A plethora of methods for detecting such change points in time series statistics have been developed over...
Autores principales: | Toutounji, Hazem, Durstewitz, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187984/ https://www.ncbi.nlm.nih.gov/pubmed/30349472 http://dx.doi.org/10.3389/fninf.2018.00067 |
Ejemplares similares
-
Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
por: Koppe, Georgia, et al.
Publicado: (2019) -
Efficient spline regression for neural spiking data
por: Sarmashghi, Mehrad, et al.
Publicado: (2021) -
Application of Multivariate Adaptive Regression Splines (MARSplines) for Predicting Antitumor Activity of Anthrapyrazole Derivatives
por: Gackowski, Marcin, et al.
Publicado: (2022) -
Spline smoothing and nonparametric regression /
por: Eubank, Randall L., 1952-
Publicado: (1988) -
Behavior control in the sensorimotor loop with short-term synaptic dynamics induced by self-regulating neurons
por: Toutounji, Hazem, et al.
Publicado: (2014)