Cargando…

Building interpretable models for polypharmacy prediction in older chronic patients based on drug prescription records

BACKGROUND: Multimorbidity presents an increasingly common problem in older population, and is tightly related to polypharmacy, i.e., concurrent use of multiple medications by one individual. Detecting polypharmacy from drug prescription records is not only related to multimorbidity, but can also po...

Descripción completa

Detalles Bibliográficos
Autores principales: Kocbek, Simon, Kocbek, Primoz, Stozer, Andraz, Zupanic, Tina, Groza, Tudor, Stiglic, Gregor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187991/
https://www.ncbi.nlm.nih.gov/pubmed/30345175
http://dx.doi.org/10.7717/peerj.5765
Descripción
Sumario:BACKGROUND: Multimorbidity presents an increasingly common problem in older population, and is tightly related to polypharmacy, i.e., concurrent use of multiple medications by one individual. Detecting polypharmacy from drug prescription records is not only related to multimorbidity, but can also point at incorrect use of medicines. In this work, we build models for predicting polypharmacy from drug prescription records for newly diagnosed chronic patients. We evaluate the models’ performance with a strong focus on interpretability of the results. METHODS: A centrally collected nationwide dataset of prescription records was used to perform electronic phenotyping of patients for the following two chronic conditions: type 2 diabetes mellitus (T2D) and cardiovascular disease (CVD). In addition, a hospital discharge dataset was linked to the prescription records. A regularized regression model was built for 11 different experimental scenarios on two datasets, and complexity of the model was controlled with a maximum number of dimensions (MND) parameter. Performance and interpretability of the model were evaluated with AUC, AUPRC, calibration plots, and interpretation by a medical doctor. RESULTS: For the CVD model, AUC and AUPRC values of 0.900 (95% [0.898–0.901]) and 0.640 (0.635–0.645) were reached, respectively, while for the T2D model the values were 0.808 (0.803–0.812) and 0.732 (0.725–0.739). Reducing complexity of the model by 65% and 48% for CVD and T2D, resulted in 3% and 4% lower AUC, and 4% and 5% lower AUPRC values, respectively. Calibration plots for our models showed that we can achieve moderate calibration with reducing the models’ complexity without significant loss of predictive performance. DISCUSSION: In this study, we found that it is possible to use drug prescription data to build a model for polypharmacy prediction in older population. In addition, the study showed that it is possible to find a balance between good performance and interpretability of the model, and achieve acceptable calibration at the same time.