Cargando…
Inhibition of store-operated channels by carboxyamidotriazole sensitizes ovarian carcinoma cells to anti-Bclx(L) strategies through Mcl-1 down-regulation
The anti-apoptotic proteins Bcl-x(L) and Mcl-1 have been identified to play a pivotal role in apoptosis resistance in ovarian cancer and constitute key targets for innovative therapeutic strategies. Although BH3-mimetics (i.e. ABT-737) potently inhibit Bcl-x(L) activity, targeting Mcl-1 remains a hu...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188062/ https://www.ncbi.nlm.nih.gov/pubmed/30338034 http://dx.doi.org/10.18632/oncotarget.26084 |
Sumario: | The anti-apoptotic proteins Bcl-x(L) and Mcl-1 have been identified to play a pivotal role in apoptosis resistance in ovarian cancer and constitute key targets for innovative therapeutic strategies. Although BH3-mimetics (i.e. ABT-737) potently inhibit Bcl-x(L) activity, targeting Mcl-1 remains a hurdle to the success of these strategies. Calcium signaling is profoundly remodeled during carcinogenesis and was reported to activate the signaling pathway controlling Mcl-1 expression. In this context, we investigated the effect of carboxyamidotriazole (CAI), a calcium channel inhibitor used in clinical trials, on Mcl-1 expression. CAI had an anti-proliferative effect on ovarian carcinoma cell lines and strongly down-regulated Mcl-1 expression. It inhibited store-operated calcium entry (SOCE) and Mcl-1 translation through mTORC1 deactivation. Moreover, it sensitized ovarian carcinoma cells to anti-Bcl-x(L) strategies as their combination elicited massive apoptosis. Its effect on mTORC1 and Mcl-1 was mimicked by the potent SOCE inhibitor, YM58483, which also triggered apoptosis when combined with ABT-737. As a whole, this study suggests that CAI sensitizes to anti-Bcl-x(L) strategies via its action on Mcl-1 translation and that modulation of SOCE could extend the therapeutic arsenal for treatment of ovarian carcinoma. |
---|