Cargando…

Molecular dynamics simulation reveals the possible druggable hot-spots of USP7

The plasticity in Ubiquitin Specific Proteases (USP7) inducing conformational changes at important areas has highlighted an intricate mechanism, by which USP7 is regulated. Given the importance of USP7 in oncogenic pathways and immune-oncology, identification of USP7 inhibitors has attracted conside...

Descripción completa

Detalles Bibliográficos
Autores principales: Srivastava, Mitul, Suri, Charu, Singh, Mrityunjay, Mathur, Rajani, Asthana, Shailendra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188144/
https://www.ncbi.nlm.nih.gov/pubmed/30344943
http://dx.doi.org/10.18632/oncotarget.26136
Descripción
Sumario:The plasticity in Ubiquitin Specific Proteases (USP7) inducing conformational changes at important areas has highlighted an intricate mechanism, by which USP7 is regulated. Given the importance of USP7 in oncogenic pathways and immune-oncology, identification of USP7 inhibitors has attracted considerable interest. Despite substantial efforts, the discovery of deubiquitinases (DUBs) inhibitors, knowledge of their binding site and understanding the possible mechanism of action has proven particularly challenging. We disclose the most likely binding site of P5091 (a potent USP7 inhibitor), which reveal a cryptic allosteric site through extensive computational studies in an inhibitor dependent and independent manner. Overall, these findings demonstrate the tractability and druggability of USP7. Through a series of molecular dynamics simulations and detailed quantitative analysis, a dynamically stable allosteric binding site near catalytic center of the inactive state of USP7 (site partially absent in active state), along with two newly identified sites have been revealed, which opens the avenue for rational structure-guided inhibitor designing in USP7 specific-manner.