Cargando…

Microfluidization trends in the development of nanodelivery systems and applications in chronic disease treatments

Plant bioactive compounds are known for their extensive health benefits and therefore have been used for generations in traditional and modern medicine to improve the health of humans. Processing and storage instabilities of the plant bioactive compounds, however, limit their bioavailability and bio...

Descripción completa

Detalles Bibliográficos
Autores principales: Ganesan, Palanivel, Karthivashan, Govindarajan, Park, Shin Young, Kim, Joonsoo, Choi, Dong-Kug
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188155/
https://www.ncbi.nlm.nih.gov/pubmed/30349240
http://dx.doi.org/10.2147/IJN.S178077
Descripción
Sumario:Plant bioactive compounds are known for their extensive health benefits and therefore have been used for generations in traditional and modern medicine to improve the health of humans. Processing and storage instabilities of the plant bioactive compounds, however, limit their bioavailability and bioaccessibility and thus lead researchers in search of novel encapsulation systems with enhanced stability, bioavailability, and bioaccessibility of encapsulated plant bioactive compounds. Recently many varieties of encapsulation methods have been used; among them, microfluidization has emerged as a novel method used for the development of delivery systems including solid lipid nanocarriers, nanoemulsions, liposomes, and so on with enhanced stability and bioavailability of encapsulated plant bioactive compounds. Therefore, the nanodelivery systems developed using microfluidization techniques have received much attention from the medical industry for their ability to facilitate controlled delivery with enhanced health benefits in the treatment of various chronic diseases. Many researchers have focused on plant bioactive compound-based delivery systems using microfluidization to enhance the bioavailability and bioaccessibility of encapsulated bioactive compounds in the treatment of various chronic diseases. This review focuses on various nanodelivery systems developed using microfluidization techniques and applications in various chronic disease treatments.