Cargando…

Derivatives and inverse of cascaded linear+nonlinear neural models

In vision science, cascades of Linear+Nonlinear transforms are very successful in modeling a number of perceptual experiences. However, the conventional literature is usually too focused on only describing the forward input-output transform. Instead, in this work we present the mathematics of such c...

Descripción completa

Detalles Bibliográficos
Autores principales: Martinez-Garcia, M., Cyriac, P., Batard, T., Bertalmío, M., Malo, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188639/
https://www.ncbi.nlm.nih.gov/pubmed/30321175
http://dx.doi.org/10.1371/journal.pone.0201326
Descripción
Sumario:In vision science, cascades of Linear+Nonlinear transforms are very successful in modeling a number of perceptual experiences. However, the conventional literature is usually too focused on only describing the forward input-output transform. Instead, in this work we present the mathematics of such cascades beyond the forward transform, namely the Jacobian matrices and the inverse. The fundamental reason for this analytical treatment is that it offers useful analytical insight into the psychophysics, the physiology, and the function of the visual system. For instance, we show how the trends of the sensitivity (volume of the discrimination regions) and the adaptation of the receptive fields can be identified in the expression of the Jacobian w.r.t. the stimulus. This matrix also tells us which regions of the stimulus space are encoded more efficiently in multi-information terms. The Jacobian w.r.t. the parameters shows which aspects of the model have bigger impact in the response, and hence their relative relevance. The analytic inverse implies conditions for the response and model parameters to ensure appropriate decoding. From the experimental and applied perspective, (a) the Jacobian w.r.t. the stimulus is necessary in new experimental methods based on the synthesis of visual stimuli with interesting geometrical properties, (b) the Jacobian matrices w.r.t. the parameters are convenient to learn the model from classical experiments or alternative goal optimization, and (c) the inverse is a promising model-based alternative to blind machine-learning methods for neural decoding that do not include meaningful biological information. The theory is checked by building and testing a vision model that actually follows a modular Linear+Nonlinear program. Our illustrative derivable and invertible model consists of a cascade of modules that account for brightness, contrast, energy masking, and wavelet masking. To stress the generality of this modular setting we show examples where some of the canonical Divisive Normalization modules are substituted by equivalent modules such as the Wilson-Cowan interaction model (at the V1 cortex) or a tone-mapping model (at the retina).