Cargando…
NTnC-like genetically encoded calcium indicator with a positive and enhanced response and fast kinetics
The NTnC genetically encoded calcium indicator has an advantageous design because of its smaller size, GFP-like N- and C-terminal ends and two-fold reduced number of calcium binding sites compared with widely used indicators from the GCaMP family. However, NTnC has an inverted and modest calcium res...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189086/ https://www.ncbi.nlm.nih.gov/pubmed/30323302 http://dx.doi.org/10.1038/s41598-018-33613-6 |
Sumario: | The NTnC genetically encoded calcium indicator has an advantageous design because of its smaller size, GFP-like N- and C-terminal ends and two-fold reduced number of calcium binding sites compared with widely used indicators from the GCaMP family. However, NTnC has an inverted and modest calcium response and a low temporal resolution. By replacing the mNeonGreen fluorescent part in NTnC with EYFP, we engineered an NTnC-like indicator, referred to as YTnC, that had a positive and substantially improved calcium response and faster kinetics. YTnC had a 3-fold higher calcium response and 13.6-fold lower brightness than NTnC in vitro. According to stopped-flow experiments performed in vitro, YTnC had 4-fold faster calcium-dissociation kinetics than NTnC. In HeLa cells, YTnC exhibited a 3.3-fold lower brightness and 4.9-fold increased response to calcium transients than NTnC. The spontaneous activity of neuronal cultures induced a 3.6-fold larger ΔF/F response of YTnC than previously shown for NTnC. On patched neurons, YTnC had a 2.6-fold lower ΔF/F than GCaMP6s. YTnC successfully visualized calcium transients in neurons in the cortex of anesthetized mice and the hippocampus of awake mice using single- and two-photon microscopy. Moreover, YTnC outperformed GCaMP6s in the mitochondria and endoplasmic reticulum of cultured HeLa and neuronal cells. |
---|