Cargando…

Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida

Menaquinone (vitamin K(2)) shuttles electrons between membrane-bound respiratory complexes under microaerophilic conditions. In photosynthetic eukaryotes and cyanobacteria, phylloquinone (vitamin K(1)) participates in photosystem I function. Here we elucidate the evolutionary history of vitamin K me...

Descripción completa

Detalles Bibliográficos
Autores principales: Cenci, U., Qiu, H., Pillonel, T., Cardol, P., Remacle, C., Colleoni, C., Kadouche, D., Chabi, M., Greub, G., Bhattacharya, D., Ball, S. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189191/
https://www.ncbi.nlm.nih.gov/pubmed/30323231
http://dx.doi.org/10.1038/s41598-018-33663-w
_version_ 1783363312825663488
author Cenci, U.
Qiu, H.
Pillonel, T.
Cardol, P.
Remacle, C.
Colleoni, C.
Kadouche, D.
Chabi, M.
Greub, G.
Bhattacharya, D.
Ball, S. G.
author_facet Cenci, U.
Qiu, H.
Pillonel, T.
Cardol, P.
Remacle, C.
Colleoni, C.
Kadouche, D.
Chabi, M.
Greub, G.
Bhattacharya, D.
Ball, S. G.
author_sort Cenci, U.
collection PubMed
description Menaquinone (vitamin K(2)) shuttles electrons between membrane-bound respiratory complexes under microaerophilic conditions. In photosynthetic eukaryotes and cyanobacteria, phylloquinone (vitamin K(1)) participates in photosystem I function. Here we elucidate the evolutionary history of vitamin K metabolism in algae and plants. We show that Chlamydiales intracellular pathogens made major genetic contributions to the synthesis of the naphthoyl ring core and the isoprenoid side-chain of these quinones. Production of the core in extremophilic red algae is under control of a menaquinone (Men) gene cluster consisting of 7 genes that putatively originated via lateral gene transfer (LGT) from a chlamydial donor to the plastid genome. In other green and red algae, functionally related nuclear genes also originated via LGT from a non-cyanobacterial, albeit unidentified source. In addition, we show that 3–4 of the 9 required steps for synthesis of the isoprenoid side chains are under control of genes of chlamydial origin. These results are discussed in the light of the hypoxic response experienced by the cyanobacterial endosymbiont when it gained access to the eukaryotic cytosol.
format Online
Article
Text
id pubmed-6189191
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61891912018-10-22 Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida Cenci, U. Qiu, H. Pillonel, T. Cardol, P. Remacle, C. Colleoni, C. Kadouche, D. Chabi, M. Greub, G. Bhattacharya, D. Ball, S. G. Sci Rep Article Menaquinone (vitamin K(2)) shuttles electrons between membrane-bound respiratory complexes under microaerophilic conditions. In photosynthetic eukaryotes and cyanobacteria, phylloquinone (vitamin K(1)) participates in photosystem I function. Here we elucidate the evolutionary history of vitamin K metabolism in algae and plants. We show that Chlamydiales intracellular pathogens made major genetic contributions to the synthesis of the naphthoyl ring core and the isoprenoid side-chain of these quinones. Production of the core in extremophilic red algae is under control of a menaquinone (Men) gene cluster consisting of 7 genes that putatively originated via lateral gene transfer (LGT) from a chlamydial donor to the plastid genome. In other green and red algae, functionally related nuclear genes also originated via LGT from a non-cyanobacterial, albeit unidentified source. In addition, we show that 3–4 of the 9 required steps for synthesis of the isoprenoid side chains are under control of genes of chlamydial origin. These results are discussed in the light of the hypoxic response experienced by the cyanobacterial endosymbiont when it gained access to the eukaryotic cytosol. Nature Publishing Group UK 2018-10-15 /pmc/articles/PMC6189191/ /pubmed/30323231 http://dx.doi.org/10.1038/s41598-018-33663-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Cenci, U.
Qiu, H.
Pillonel, T.
Cardol, P.
Remacle, C.
Colleoni, C.
Kadouche, D.
Chabi, M.
Greub, G.
Bhattacharya, D.
Ball, S. G.
Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida
title Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida
title_full Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida
title_fullStr Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida
title_full_unstemmed Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida
title_short Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida
title_sort host-pathogen biotic interactions shaped vitamin k metabolism in archaeplastida
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189191/
https://www.ncbi.nlm.nih.gov/pubmed/30323231
http://dx.doi.org/10.1038/s41598-018-33663-w
work_keys_str_mv AT cenciu hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida
AT qiuh hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida
AT pillonelt hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida
AT cardolp hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida
AT remaclec hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida
AT colleonic hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida
AT kadouched hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida
AT chabim hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida
AT greubg hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida
AT bhattacharyad hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida
AT ballsg hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida