Cargando…
Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida
Menaquinone (vitamin K(2)) shuttles electrons between membrane-bound respiratory complexes under microaerophilic conditions. In photosynthetic eukaryotes and cyanobacteria, phylloquinone (vitamin K(1)) participates in photosystem I function. Here we elucidate the evolutionary history of vitamin K me...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189191/ https://www.ncbi.nlm.nih.gov/pubmed/30323231 http://dx.doi.org/10.1038/s41598-018-33663-w |
_version_ | 1783363312825663488 |
---|---|
author | Cenci, U. Qiu, H. Pillonel, T. Cardol, P. Remacle, C. Colleoni, C. Kadouche, D. Chabi, M. Greub, G. Bhattacharya, D. Ball, S. G. |
author_facet | Cenci, U. Qiu, H. Pillonel, T. Cardol, P. Remacle, C. Colleoni, C. Kadouche, D. Chabi, M. Greub, G. Bhattacharya, D. Ball, S. G. |
author_sort | Cenci, U. |
collection | PubMed |
description | Menaquinone (vitamin K(2)) shuttles electrons between membrane-bound respiratory complexes under microaerophilic conditions. In photosynthetic eukaryotes and cyanobacteria, phylloquinone (vitamin K(1)) participates in photosystem I function. Here we elucidate the evolutionary history of vitamin K metabolism in algae and plants. We show that Chlamydiales intracellular pathogens made major genetic contributions to the synthesis of the naphthoyl ring core and the isoprenoid side-chain of these quinones. Production of the core in extremophilic red algae is under control of a menaquinone (Men) gene cluster consisting of 7 genes that putatively originated via lateral gene transfer (LGT) from a chlamydial donor to the plastid genome. In other green and red algae, functionally related nuclear genes also originated via LGT from a non-cyanobacterial, albeit unidentified source. In addition, we show that 3–4 of the 9 required steps for synthesis of the isoprenoid side chains are under control of genes of chlamydial origin. These results are discussed in the light of the hypoxic response experienced by the cyanobacterial endosymbiont when it gained access to the eukaryotic cytosol. |
format | Online Article Text |
id | pubmed-6189191 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61891912018-10-22 Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida Cenci, U. Qiu, H. Pillonel, T. Cardol, P. Remacle, C. Colleoni, C. Kadouche, D. Chabi, M. Greub, G. Bhattacharya, D. Ball, S. G. Sci Rep Article Menaquinone (vitamin K(2)) shuttles electrons between membrane-bound respiratory complexes under microaerophilic conditions. In photosynthetic eukaryotes and cyanobacteria, phylloquinone (vitamin K(1)) participates in photosystem I function. Here we elucidate the evolutionary history of vitamin K metabolism in algae and plants. We show that Chlamydiales intracellular pathogens made major genetic contributions to the synthesis of the naphthoyl ring core and the isoprenoid side-chain of these quinones. Production of the core in extremophilic red algae is under control of a menaquinone (Men) gene cluster consisting of 7 genes that putatively originated via lateral gene transfer (LGT) from a chlamydial donor to the plastid genome. In other green and red algae, functionally related nuclear genes also originated via LGT from a non-cyanobacterial, albeit unidentified source. In addition, we show that 3–4 of the 9 required steps for synthesis of the isoprenoid side chains are under control of genes of chlamydial origin. These results are discussed in the light of the hypoxic response experienced by the cyanobacterial endosymbiont when it gained access to the eukaryotic cytosol. Nature Publishing Group UK 2018-10-15 /pmc/articles/PMC6189191/ /pubmed/30323231 http://dx.doi.org/10.1038/s41598-018-33663-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Cenci, U. Qiu, H. Pillonel, T. Cardol, P. Remacle, C. Colleoni, C. Kadouche, D. Chabi, M. Greub, G. Bhattacharya, D. Ball, S. G. Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida |
title | Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida |
title_full | Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida |
title_fullStr | Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida |
title_full_unstemmed | Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida |
title_short | Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida |
title_sort | host-pathogen biotic interactions shaped vitamin k metabolism in archaeplastida |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189191/ https://www.ncbi.nlm.nih.gov/pubmed/30323231 http://dx.doi.org/10.1038/s41598-018-33663-w |
work_keys_str_mv | AT cenciu hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida AT qiuh hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida AT pillonelt hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida AT cardolp hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida AT remaclec hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida AT colleonic hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida AT kadouched hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida AT chabim hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida AT greubg hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida AT bhattacharyad hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida AT ballsg hostpathogenbioticinteractionsshapedvitaminkmetabolisminarchaeplastida |