Cargando…
Zinc Finger-Homeodomain Transcriptional Factors (ZHDs) in Upland Cotton (Gossypium hirsutum): Genome-Wide Identification and Expression Analysis in Fiber Development
Zinc finger-homeodomain (ZHD) genes encode a family of plant-specific transcription factors that not only participate in the regulation of plant growth and development but also play an important role in the response to abiotic stress. The ZHD gene family has been studied in several model plants, inc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189526/ https://www.ncbi.nlm.nih.gov/pubmed/30356782 http://dx.doi.org/10.3389/fgene.2018.00357 |
_version_ | 1783363386325598208 |
---|---|
author | Abdullah, Muhammad Cheng, Xi Cao, Yunpeng Su, Xueqiang Manzoor, Muhammad Aamir Gao, Junshan Cai, Yongping Lin, Yi |
author_facet | Abdullah, Muhammad Cheng, Xi Cao, Yunpeng Su, Xueqiang Manzoor, Muhammad Aamir Gao, Junshan Cai, Yongping Lin, Yi |
author_sort | Abdullah, Muhammad |
collection | PubMed |
description | Zinc finger-homeodomain (ZHD) genes encode a family of plant-specific transcription factors that not only participate in the regulation of plant growth and development but also play an important role in the response to abiotic stress. The ZHD gene family has been studied in several model plants, including Solanum lycopersicum, Zea mays, Oryza sativa, and Arabidopsis thaliana. However, a comprehensive study of the genes of the ZHD family and their roles in fiber development and pigmentation in upland cotton has not been completed. To address this gap, we selected a brown fiber cultivar for our study; brown color in cotton is one of the most desired colors in the textile industry. The natural colored fibers require less processing and little dying, thereby eliminating dye costs and chemical residues. Using bioinformatics approaches, we identified 37 GhZHD genes from Gossypium hirsutum and then divided these genes into seven groups based on their phylogeny. The GhZHD genes were mostly conserved in each subfamily with minor variations in motif distribution and gene structure. These genes were largely distributed on 19 of the 26 upland cotton chromosomes. Among the Gossypium genomes, the paralogs and orthologs of the GhZHD genes were identified and further characterized. Furthermore, among the paralogs, we observed that the ZHD family duplications in Gossypium genomes (G. hirsutum, G. arboreum, and G. raimondii) were probably derived from segmental duplication or genome-wide duplication (GWD) events. Through a combination of qRT-PCR and proanthocyanidins (PA) accumulation analyses in brown cotton fibers, we concluded that the candidate genes involved in early fiber development and fiber pigment synthesis include the following: GhZHD29, GhZHD35, GhZHD30, GhZHD31, GhZHD11, GhZHD27, GhZHD18, GhZHD15, GhZHD16, GhZHD22, GhZHD6, GhZHD33, GhZHD13, GhZHD5, and GhZHD23. This study delivers insights into the evolution of the GhZHD genes in brown cotton, serves as a valuable resource for further studies, and identifies the conditions necessary for improving the quality of brown cotton fiber. |
format | Online Article Text |
id | pubmed-6189526 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61895262018-10-23 Zinc Finger-Homeodomain Transcriptional Factors (ZHDs) in Upland Cotton (Gossypium hirsutum): Genome-Wide Identification and Expression Analysis in Fiber Development Abdullah, Muhammad Cheng, Xi Cao, Yunpeng Su, Xueqiang Manzoor, Muhammad Aamir Gao, Junshan Cai, Yongping Lin, Yi Front Genet Genetics Zinc finger-homeodomain (ZHD) genes encode a family of plant-specific transcription factors that not only participate in the regulation of plant growth and development but also play an important role in the response to abiotic stress. The ZHD gene family has been studied in several model plants, including Solanum lycopersicum, Zea mays, Oryza sativa, and Arabidopsis thaliana. However, a comprehensive study of the genes of the ZHD family and their roles in fiber development and pigmentation in upland cotton has not been completed. To address this gap, we selected a brown fiber cultivar for our study; brown color in cotton is one of the most desired colors in the textile industry. The natural colored fibers require less processing and little dying, thereby eliminating dye costs and chemical residues. Using bioinformatics approaches, we identified 37 GhZHD genes from Gossypium hirsutum and then divided these genes into seven groups based on their phylogeny. The GhZHD genes were mostly conserved in each subfamily with minor variations in motif distribution and gene structure. These genes were largely distributed on 19 of the 26 upland cotton chromosomes. Among the Gossypium genomes, the paralogs and orthologs of the GhZHD genes were identified and further characterized. Furthermore, among the paralogs, we observed that the ZHD family duplications in Gossypium genomes (G. hirsutum, G. arboreum, and G. raimondii) were probably derived from segmental duplication or genome-wide duplication (GWD) events. Through a combination of qRT-PCR and proanthocyanidins (PA) accumulation analyses in brown cotton fibers, we concluded that the candidate genes involved in early fiber development and fiber pigment synthesis include the following: GhZHD29, GhZHD35, GhZHD30, GhZHD31, GhZHD11, GhZHD27, GhZHD18, GhZHD15, GhZHD16, GhZHD22, GhZHD6, GhZHD33, GhZHD13, GhZHD5, and GhZHD23. This study delivers insights into the evolution of the GhZHD genes in brown cotton, serves as a valuable resource for further studies, and identifies the conditions necessary for improving the quality of brown cotton fiber. Frontiers Media S.A. 2018-10-09 /pmc/articles/PMC6189526/ /pubmed/30356782 http://dx.doi.org/10.3389/fgene.2018.00357 Text en Copyright © 2018 Abdullah, Cheng, Cao, Su, Manzoor, Gao, Cai and Lin. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Abdullah, Muhammad Cheng, Xi Cao, Yunpeng Su, Xueqiang Manzoor, Muhammad Aamir Gao, Junshan Cai, Yongping Lin, Yi Zinc Finger-Homeodomain Transcriptional Factors (ZHDs) in Upland Cotton (Gossypium hirsutum): Genome-Wide Identification and Expression Analysis in Fiber Development |
title | Zinc Finger-Homeodomain Transcriptional Factors (ZHDs) in Upland Cotton (Gossypium hirsutum): Genome-Wide Identification and Expression Analysis in Fiber Development |
title_full | Zinc Finger-Homeodomain Transcriptional Factors (ZHDs) in Upland Cotton (Gossypium hirsutum): Genome-Wide Identification and Expression Analysis in Fiber Development |
title_fullStr | Zinc Finger-Homeodomain Transcriptional Factors (ZHDs) in Upland Cotton (Gossypium hirsutum): Genome-Wide Identification and Expression Analysis in Fiber Development |
title_full_unstemmed | Zinc Finger-Homeodomain Transcriptional Factors (ZHDs) in Upland Cotton (Gossypium hirsutum): Genome-Wide Identification and Expression Analysis in Fiber Development |
title_short | Zinc Finger-Homeodomain Transcriptional Factors (ZHDs) in Upland Cotton (Gossypium hirsutum): Genome-Wide Identification and Expression Analysis in Fiber Development |
title_sort | zinc finger-homeodomain transcriptional factors (zhds) in upland cotton (gossypium hirsutum): genome-wide identification and expression analysis in fiber development |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189526/ https://www.ncbi.nlm.nih.gov/pubmed/30356782 http://dx.doi.org/10.3389/fgene.2018.00357 |
work_keys_str_mv | AT abdullahmuhammad zincfingerhomeodomaintranscriptionalfactorszhdsinuplandcottongossypiumhirsutumgenomewideidentificationandexpressionanalysisinfiberdevelopment AT chengxi zincfingerhomeodomaintranscriptionalfactorszhdsinuplandcottongossypiumhirsutumgenomewideidentificationandexpressionanalysisinfiberdevelopment AT caoyunpeng zincfingerhomeodomaintranscriptionalfactorszhdsinuplandcottongossypiumhirsutumgenomewideidentificationandexpressionanalysisinfiberdevelopment AT suxueqiang zincfingerhomeodomaintranscriptionalfactorszhdsinuplandcottongossypiumhirsutumgenomewideidentificationandexpressionanalysisinfiberdevelopment AT manzoormuhammadaamir zincfingerhomeodomaintranscriptionalfactorszhdsinuplandcottongossypiumhirsutumgenomewideidentificationandexpressionanalysisinfiberdevelopment AT gaojunshan zincfingerhomeodomaintranscriptionalfactorszhdsinuplandcottongossypiumhirsutumgenomewideidentificationandexpressionanalysisinfiberdevelopment AT caiyongping zincfingerhomeodomaintranscriptionalfactorszhdsinuplandcottongossypiumhirsutumgenomewideidentificationandexpressionanalysisinfiberdevelopment AT linyi zincfingerhomeodomaintranscriptionalfactorszhdsinuplandcottongossypiumhirsutumgenomewideidentificationandexpressionanalysisinfiberdevelopment |