Cargando…
Evolving Robust Policy Coverage Sets in Multi-Objective Markov Decision Processes Through Intrinsically Motivated Self-Play
Many real-world decision-making problems involve multiple conflicting objectives that can not be optimized simultaneously without a compromise. Such problems are known as multi-objective Markov decision processes and they constitute a significant challenge for conventional single-objective reinforce...
Autores principales: | Abdelfattah, Sherif, Kasmarik, Kathryn, Hu, Jiankun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189603/ https://www.ncbi.nlm.nih.gov/pubmed/30356836 http://dx.doi.org/10.3389/fnbot.2018.00065 |
Ejemplares similares
-
Toward Computational Motivation for Multi-Agent Systems and Swarms
por: Khan, Md Mohiuddin, et al.
Publicado: (2018) -
Robust active binocular vision through intrinsically motivated learning
por: Lonini, Luca, et al.
Publicado: (2013) -
Proteome coverage prediction with infinite Markov models
por: Claassen, Manfred, et al.
Publicado: (2009) -
Making Robust Policy Decisions Using Global Biodiversity Indicators
por: Nicholson, Emily, et al.
Publicado: (2012) -
Markov decision processes in practice
por: Boucherie, Richard J, et al.
Publicado: (2017)