Cargando…

Fabrication of All Glass Bifurcation Microfluidic Chip for Blood Plasma Separation

An all-glass bifurcation microfluidic chip for blood plasma separation was fabricated by a cost-effective glass molding process using an amorphous carbon (AC) mold, which in turn was fabricated by the carbonization of a replicated furan precursor. To compensate for the shrinkage during AC mold fabri...

Descripción completa

Detalles Bibliográficos
Autores principales: Jang, Hyungjun, Haq, Muhammad Refatul, Ju, Jonghyun, Kim, Youngkyu, Kim, Seok-min, Lim, Jiseok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189722/
http://dx.doi.org/10.3390/mi8030067
Descripción
Sumario:An all-glass bifurcation microfluidic chip for blood plasma separation was fabricated by a cost-effective glass molding process using an amorphous carbon (AC) mold, which in turn was fabricated by the carbonization of a replicated furan precursor. To compensate for the shrinkage during AC mold fabrication, an enlarged photoresist pattern master was designed, and an AC mold with a dimensional error of 2.9% was achieved; the dimensional error of the master pattern was 1.6%. In the glass molding process, a glass microchannel plate with negligible shape errors (~1.5%) compared to AC mold was replicated. Finally, an all-glass bifurcation microfluidic chip was realized by micro drilling and thermal fusion bonding processes. A separation efficiency of 74% was obtained using the fabricated all-glass bifurcation microfluidic chip.