Cargando…
Design and Analysis of a New Tuning Fork Structure for Resonant Pressure Sensor
This paper presents a micromachined resonant pressure sensor. The sensor is designed to optimize the sensitivity and reduce the cross-talk between the driving electrodes and sensing electrodes. The relationship between the sensitivity of the sensor and the main design parameters is analyzed both the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189765/ https://www.ncbi.nlm.nih.gov/pubmed/30404322 http://dx.doi.org/10.3390/mi7090148 |
_version_ | 1783363425611546624 |
---|---|
author | Sun, Xiaodong Yuan, Weizheng Qiao, Dayong Sun, Ming Ren, Sen |
author_facet | Sun, Xiaodong Yuan, Weizheng Qiao, Dayong Sun, Ming Ren, Sen |
author_sort | Sun, Xiaodong |
collection | PubMed |
description | This paper presents a micromachined resonant pressure sensor. The sensor is designed to optimize the sensitivity and reduce the cross-talk between the driving electrodes and sensing electrodes. The relationship between the sensitivity of the sensor and the main design parameters is analyzed both theoretically and numerically. The sensing and driving electrodes are optimized to get both high sensing capacitance and low cross-talk. This sensor is fabricated using a micromachining process based on a silicon-on-insulator (SOI) wafer. An open-loop measurement system and a closed-loop self-oscillation system is employed to measure the characteristics of the sensor. The experiment result shows that the sensor has a pressure sensitivity of about 29 Hz/kPa, a nonlinearity of 0.02%FS, a hysteresis error of 0.05%FS, and a repeatability error of 0.01%FS. The temperature coefficient is less than 2 Hz/°C in the range of −40 to 80 °C and the short-term stability of the sensor is better than 0.005%FS. |
format | Online Article Text |
id | pubmed-6189765 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61897652018-11-01 Design and Analysis of a New Tuning Fork Structure for Resonant Pressure Sensor Sun, Xiaodong Yuan, Weizheng Qiao, Dayong Sun, Ming Ren, Sen Micromachines (Basel) Article This paper presents a micromachined resonant pressure sensor. The sensor is designed to optimize the sensitivity and reduce the cross-talk between the driving electrodes and sensing electrodes. The relationship between the sensitivity of the sensor and the main design parameters is analyzed both theoretically and numerically. The sensing and driving electrodes are optimized to get both high sensing capacitance and low cross-talk. This sensor is fabricated using a micromachining process based on a silicon-on-insulator (SOI) wafer. An open-loop measurement system and a closed-loop self-oscillation system is employed to measure the characteristics of the sensor. The experiment result shows that the sensor has a pressure sensitivity of about 29 Hz/kPa, a nonlinearity of 0.02%FS, a hysteresis error of 0.05%FS, and a repeatability error of 0.01%FS. The temperature coefficient is less than 2 Hz/°C in the range of −40 to 80 °C and the short-term stability of the sensor is better than 0.005%FS. MDPI 2016-08-24 /pmc/articles/PMC6189765/ /pubmed/30404322 http://dx.doi.org/10.3390/mi7090148 Text en © 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sun, Xiaodong Yuan, Weizheng Qiao, Dayong Sun, Ming Ren, Sen Design and Analysis of a New Tuning Fork Structure for Resonant Pressure Sensor |
title | Design and Analysis of a New Tuning Fork Structure for Resonant Pressure Sensor |
title_full | Design and Analysis of a New Tuning Fork Structure for Resonant Pressure Sensor |
title_fullStr | Design and Analysis of a New Tuning Fork Structure for Resonant Pressure Sensor |
title_full_unstemmed | Design and Analysis of a New Tuning Fork Structure for Resonant Pressure Sensor |
title_short | Design and Analysis of a New Tuning Fork Structure for Resonant Pressure Sensor |
title_sort | design and analysis of a new tuning fork structure for resonant pressure sensor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189765/ https://www.ncbi.nlm.nih.gov/pubmed/30404322 http://dx.doi.org/10.3390/mi7090148 |
work_keys_str_mv | AT sunxiaodong designandanalysisofanewtuningforkstructureforresonantpressuresensor AT yuanweizheng designandanalysisofanewtuningforkstructureforresonantpressuresensor AT qiaodayong designandanalysisofanewtuningforkstructureforresonantpressuresensor AT sunming designandanalysisofanewtuningforkstructureforresonantpressuresensor AT rensen designandanalysisofanewtuningforkstructureforresonantpressuresensor |