Cargando…

Automatic and Selective Single Cell Manipulation in a Pressure-Driven Microfluidic Lab-On-Chip Device

A microfluidic lab-on-chip device was developed to automatically and selectively manipulate target cells at the single cell level. The device is composed of a microfluidic chip, mini solenoid valves with negative-pressurized soft tubes, and a LabView(®)-based data acquisition device. Once a target c...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Yigang, Song, Zhenyu, Yan, Yimo, Song, Yongxin, Pan, Xinxiang, Wang, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189766/
http://dx.doi.org/10.3390/mi8060172
Descripción
Sumario:A microfluidic lab-on-chip device was developed to automatically and selectively manipulate target cells at the single cell level. The device is composed of a microfluidic chip, mini solenoid valves with negative-pressurized soft tubes, and a LabView(®)-based data acquisition device. Once a target cell passes the resistive pulse sensing gate of the microfluidic chip, the solenoid valves are automatically actuated and open the negative-pressurized tubes placed at the ends of the collecting channels. As a result, the cell is transported to that collecting well. Numerical simulation shows that a 0.14 mm(3) volume change of the soft tube can result in a 1.58 mm/s moving velocity of the sample solution. Experiments with single polystyrene particles and cancer cells samples were carried out to demonstrate the effectiveness of this method. Selectively manipulating a certain size of particles from a mixture solution was also achieved. Due to the very high pressure-driven flow switching, as many as 300 target cells per minute can be isolated from the sample solution and thus is particularly suitable for manipulating very rare target cells. The device is simple, automatic, and label-free and particularly suitable for isolating single cells off the chip one by one for downstream analysis.