Cargando…

Dealing with Magnetic Disturbances in Human Motion Capture: A Survey of Techniques

Magnetic-Inertial Measurement Units (MIMUs) based on microelectromechanical (MEMS) technologies are widespread in contexts such as human motion tracking. Although they present several advantages (lightweight, size, cost), their orientation estimation accuracy might be poor. Indoor magnetic disturban...

Descripción completa

Detalles Bibliográficos
Autores principales: Ligorio, Gabriele, Sabatini, Angelo Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189838/
https://www.ncbi.nlm.nih.gov/pubmed/30407416
http://dx.doi.org/10.3390/mi7030043
Descripción
Sumario:Magnetic-Inertial Measurement Units (MIMUs) based on microelectromechanical (MEMS) technologies are widespread in contexts such as human motion tracking. Although they present several advantages (lightweight, size, cost), their orientation estimation accuracy might be poor. Indoor magnetic disturbances represent one of the limiting factors for their accuracy, and, therefore, a variety of work was done to characterize and compensate them. In this paper, the main compensation strategies included within Kalman-based orientation estimators are surveyed and classified according to which degrees of freedom are affected by the magnetic data and to the magnetic disturbance rejection methods implemented. By selecting a representative method from each category, four algorithms were obtained and compared in two different magnetic environments: (1) small workspace with an active magnetic source; (2) large workspace without active magnetic sources. A wrist-worn MIMU was used to acquire data from a healthy subject, whereas a stereophotogrammetric system was adopted to obtain ground-truth data. The results suggested that the model-based approaches represent the best compromise between the two testbeds. This is particularly true when the magnetic data are prevented to affect the estimation of the angles with respect to the vertical direction.