Cargando…

Circadian rhythms in the pathogenesis of gastrointestinal diseases

The etiology of digestive pathologies such as irritable bowel syndrome (IBS), inflammatory bowel diseases (IBD) and cancer is not yet fully understood. In recent years, several studies have evidenced circadian variations in mechanisms involved in digestive health. In situations of disturbed circadia...

Descripción completa

Detalles Bibliográficos
Autores principales: Codoñer-Franch, Pilar, Gombert, Marie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189841/
https://www.ncbi.nlm.nih.gov/pubmed/30344415
http://dx.doi.org/10.3748/wjg.v24.i38.4297
Descripción
Sumario:The etiology of digestive pathologies such as irritable bowel syndrome (IBS), inflammatory bowel diseases (IBD) and cancer is not yet fully understood. In recent years, several studies have evidenced circadian variations in mechanisms involved in digestive health. In situations of disturbed circadian rhythms (chronodisruption) where the central clock and the peripheral clocks receive incoherent signals, the synchronicity is lost producing implications for health. This lack of coordination could alter the tissue function and cause long term damage to the organs. Life habits such as sleep, physical exercise, social interaction, and feeding times are determinants for stability and integrity of circadian rhythms. In recent years, experimental and clinical studies have consistently evidenced that the alteration of circadian rhythms is associated with the development of digestive pathologies mainly linked to dismotility or changes in microbiota composition. Likewise, it seems reasonable to deep into the importance of chronodisruption as a factor that may participate in the development of pathologies such as IBS, IBD and digestive cancers. Moreover, life habits respecting circadian rhythms should be promoted for the prevention of these diseases. Further studies will allow us a better understanding of the mechanisms acting at molecular level, and the development of new therapeutic targets.