Cargando…

Hydrodynamic Simulation of an Orbital Shaking Test for the Degradation Assessment of Blood-Contact Biomedical Coatings

Biomedical coatings are used to promote the wear resistance and the biocompatibility of a mechanical heart valve. An orbital shaking test was proposed to assess the durability of the coatings by the amount material eroded by the surrounding fluid. However, there is still a lack of understanding with...

Descripción completa

Detalles Bibliográficos
Autores principales: Cherng, Wen-Jin, Dong, Zuo-Syuan, Chou, Chau-Chang, Yeh, Chi-Hsiao, Pan, Yu-Heng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189871/
http://dx.doi.org/10.3390/mi8040132
Descripción
Sumario:Biomedical coatings are used to promote the wear resistance and the biocompatibility of a mechanical heart valve. An orbital shaking test was proposed to assess the durability of the coatings by the amount material eroded by the surrounding fluid. However, there is still a lack of understanding with regards to the shaker’s rotating conditions and the corresponding physiological condition. This study implemented numerical simulations by establishing a fluid dynamic model to evaluate the intensity of the shear stress under various rotating speeds and diameters of the shaker. The results are valuable to conduct in vitro tests for estimating the performance of biomedical coatings under real hemodynamic conditions and can be applied to other fluid-contact implants.