Cargando…

A Modified Lattice Configuration Design for Compact Wideband Bulk Acoustic Wave Filter Applications

High-performance bulk acoustic wave (BAW) filters have been widely applied in the advanced radio frequency (RF) wireless communication systems in the past decade. However, the demand for filters with large bandwidth, up to 10%, still puts a significant stress on the typical aluminum nitride (AlN)-ba...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Qingrui, Pang, Wei, Zhang, Daihua, Zhang, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189991/
https://www.ncbi.nlm.nih.gov/pubmed/30404305
http://dx.doi.org/10.3390/mi7080133
Descripción
Sumario:High-performance bulk acoustic wave (BAW) filters have been widely applied in the advanced radio frequency (RF) wireless communication systems in the past decade. However, the demand for filters with large bandwidth, up to 10%, still puts a significant stress on the typical aluminum nitride (AlN)-based BAW filters. In this work, a modified lattice configuration is proposed to achieve a wideband filter response using AlN-based BAW resonators. The single stage of this novel topology comprises two auxiliary inductors paralleled in the balanced input and output of the conventional lattice topology. In multi-stage configuration, adjacent two auxiliary inductors can be combined into one; thus, the number of auxiliary inductors decreases exponentially, enabling the compact integration of filter chips. The circuit analysis is performed to reveal the working principle of this configuration. The systematic design methodology is developed ranging from the schematic design to the electromagnetic (EM) simulation. For proof-of-concept validation purposes, a prototype film bulk acoustic wave filter in this configuration is designed and fabricated. The measured 3-dB bandwidth is 400 MHz at the central frequency of 3.25 GHz (12.3% relative bandwidth), which demonstrates a huge superiority in contrast with the conventional ladder and lattice topologies.