Cargando…

In-Plane MEMS Shallow Arch Beam for Mechanical Memory

We demonstrate a memory device based on the nonlinear dynamics of an in-plane microelectromechanical systems (MEMS) clamped–clamped beam resonator, which is deliberately fabricated as a shallow arch. The arch beam is made of silicon, and is electrostatically actuated. The concept relies on the inher...

Descripción completa

Detalles Bibliográficos
Autores principales: Hafiz, Md Abdullah Al, Kosuru, Lakshmoji, Ramini, Abdallah, Chappanda, Karumbaiah N., Younis, Mohammad I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189999/
https://www.ncbi.nlm.nih.gov/pubmed/30404364
http://dx.doi.org/10.3390/mi7100191
Descripción
Sumario:We demonstrate a memory device based on the nonlinear dynamics of an in-plane microelectromechanical systems (MEMS) clamped–clamped beam resonator, which is deliberately fabricated as a shallow arch. The arch beam is made of silicon, and is electrostatically actuated. The concept relies on the inherent quadratic nonlinearity originating from the arch curvature, which results in a softening behavior that creates hysteresis and co-existing states of motion. Since it is independent of the electrostatic force, this nonlinearity gives more flexibility in the operating conditions and allows for lower actuation voltages. Experimental results are generated through electrical characterization setup. Results are shown demonstrating the switching between the two vibrational states with the change of the direct current (DC) bias voltage, thereby proving the memory concept.