Cargando…
Oocytes Polar Body Detection for Automatic Enucleation
Enucleation is a crucial step in cloning. In order to achieve automatic blind enucleation, we should detect the polar body of the oocyte automatically. The conventional polar body detection approaches have low success rate or low efficiency. We propose a polar body detection method based on machine...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190001/ https://www.ncbi.nlm.nih.gov/pubmed/30407400 http://dx.doi.org/10.3390/mi7020027 |
Sumario: | Enucleation is a crucial step in cloning. In order to achieve automatic blind enucleation, we should detect the polar body of the oocyte automatically. The conventional polar body detection approaches have low success rate or low efficiency. We propose a polar body detection method based on machine learning in this paper. On one hand, the improved Histogram of Oriented Gradient (HOG) algorithm is employed to extract features of polar body images, which will increase success rate. On the other hand, a position prediction method is put forward to narrow the search range of polar body, which will improve efficiency. Experiment results show that the success rate is 96% for various types of polar bodies. Furthermore, the method is applied to an enucleation experiment and improves the degree of automatic enucleation. |
---|