Cargando…
A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing
Microfluidics is an engineering tool used to control and manipulate fluid flows, with practical applications for lab-on-a-chip, point-of-care testing, and biological/medical research. However, microfluidic platforms typically lack the ability to create a fluidic duct, having an arbitrary flow path,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190015/ https://www.ncbi.nlm.nih.gov/pubmed/30404310 http://dx.doi.org/10.3390/mi7080139 |
_version_ | 1783363479688708096 |
---|---|
author | Hahn, Young Ki Hong, Daehyup Kang, Joo H. Choi, Sungyoung |
author_facet | Hahn, Young Ki Hong, Daehyup Kang, Joo H. Choi, Sungyoung |
author_sort | Hahn, Young Ki |
collection | PubMed |
description | Microfluidics is an engineering tool used to control and manipulate fluid flows, with practical applications for lab-on-a-chip, point-of-care testing, and biological/medical research. However, microfluidic platforms typically lack the ability to create a fluidic duct, having an arbitrary flow path, and to change the path as needed without additional design and fabrication processes. To address this challenge, we present a simple yet effective approach for facile, on-demand reconfiguration of microfluidic channels using flexible polymer tubing. The tubing provides both a well-defined, cross-sectional geometry to allow reliable fluidic operation and excellent flexibility to achieve a high degree of freedom for reconfiguration of flow pathways. We demonstrate that microparticle separation and fluid mixing can be successfully implemented by reconfiguring the shape of the tubing. The tubing is coiled around a 3D-printed barrel to make a spiral microchannel with a constant curvature for inertial separation of microparticles. Multiple knots are also made in the tubing to create a highly tortuous flow path, which induces transverse secondary flows, Dean flows, and, thus, enhances the mixing of fluids. The reconfigurable microfluidics approach, with advantages including low-cost, simplicity, and ease of use, can serve as a promising complement to conventional microfabrication methods, which require complex fabrication processes with expensive equipment and lack a degree of freedom for reconfiguration. |
format | Online Article Text |
id | pubmed-6190015 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61900152018-11-01 A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing Hahn, Young Ki Hong, Daehyup Kang, Joo H. Choi, Sungyoung Micromachines (Basel) Article Microfluidics is an engineering tool used to control and manipulate fluid flows, with practical applications for lab-on-a-chip, point-of-care testing, and biological/medical research. However, microfluidic platforms typically lack the ability to create a fluidic duct, having an arbitrary flow path, and to change the path as needed without additional design and fabrication processes. To address this challenge, we present a simple yet effective approach for facile, on-demand reconfiguration of microfluidic channels using flexible polymer tubing. The tubing provides both a well-defined, cross-sectional geometry to allow reliable fluidic operation and excellent flexibility to achieve a high degree of freedom for reconfiguration of flow pathways. We demonstrate that microparticle separation and fluid mixing can be successfully implemented by reconfiguring the shape of the tubing. The tubing is coiled around a 3D-printed barrel to make a spiral microchannel with a constant curvature for inertial separation of microparticles. Multiple knots are also made in the tubing to create a highly tortuous flow path, which induces transverse secondary flows, Dean flows, and, thus, enhances the mixing of fluids. The reconfigurable microfluidics approach, with advantages including low-cost, simplicity, and ease of use, can serve as a promising complement to conventional microfabrication methods, which require complex fabrication processes with expensive equipment and lack a degree of freedom for reconfiguration. MDPI 2016-08-08 /pmc/articles/PMC6190015/ /pubmed/30404310 http://dx.doi.org/10.3390/mi7080139 Text en © 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hahn, Young Ki Hong, Daehyup Kang, Joo H. Choi, Sungyoung A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing |
title | A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing |
title_full | A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing |
title_fullStr | A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing |
title_full_unstemmed | A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing |
title_short | A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing |
title_sort | reconfigurable microfluidics platform for microparticle separation and fluid mixing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190015/ https://www.ncbi.nlm.nih.gov/pubmed/30404310 http://dx.doi.org/10.3390/mi7080139 |
work_keys_str_mv | AT hahnyoungki areconfigurablemicrofluidicsplatformformicroparticleseparationandfluidmixing AT hongdaehyup areconfigurablemicrofluidicsplatformformicroparticleseparationandfluidmixing AT kangjooh areconfigurablemicrofluidicsplatformformicroparticleseparationandfluidmixing AT choisungyoung areconfigurablemicrofluidicsplatformformicroparticleseparationandfluidmixing AT hahnyoungki reconfigurablemicrofluidicsplatformformicroparticleseparationandfluidmixing AT hongdaehyup reconfigurablemicrofluidicsplatformformicroparticleseparationandfluidmixing AT kangjooh reconfigurablemicrofluidicsplatformformicroparticleseparationandfluidmixing AT choisungyoung reconfigurablemicrofluidicsplatformformicroparticleseparationandfluidmixing |