Cargando…
Analysis and Optimization of Thermodiffusion of an FBG Sensor in the Gas Nitriding Process
In this paper, we report the numerical calculations for a thermo-optical model and the temperature sensitivity of a fiber Bragg grating (FBG) sensor. The thermally-induced behaviors of a FBG sensor in the gas nitriding process were analyzed for temperatures ranging from 100–650 °C. The FBG consisted...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190027/ https://www.ncbi.nlm.nih.gov/pubmed/30404399 http://dx.doi.org/10.3390/mi7120227 |
Sumario: | In this paper, we report the numerical calculations for a thermo-optical model and the temperature sensitivity of a fiber Bragg grating (FBG) sensor. The thermally-induced behaviors of a FBG sensor in the gas nitriding process were analyzed for temperatures ranging from 100–650 °C. The FBG consisted of properly chosen photosensitive fiber materials with an optimized thermo-optic coefficient. The experimental and optimized thermo-optic coefficient results were consistent in terms of temperature sensitivity. In these experiments, the temperature sensitivity of the FBG was found to be 11.9 pm/°C. |
---|