Cargando…

Interface Friction of Double-Walled Carbon Nanotubes Investigated Using Molecular Dynamics †

The interface friction characteristics of double-walled carbon nanotubes (DWCNTs) are studied using molecular dynamics simulations based on the Tersoff potential. The effects of the DWCNT type, outer shell diameter, and temperature are evaluated. The simulation results show that when an inner shell...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Cheng-Da, Fang, Te-Hua, Tung, Fu-Yung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190187/
http://dx.doi.org/10.3390/mi8030084
Descripción
Sumario:The interface friction characteristics of double-walled carbon nanotubes (DWCNTs) are studied using molecular dynamics simulations based on the Tersoff potential. The effects of the DWCNT type, outer shell diameter, and temperature are evaluated. The simulation results show that when an inner shell is being pulled out from a DWCNT, the friction force and normal force between shells increase with increasing the outer shell diameter. The noise of the friction force significantly increases with the increasing temperature. Zigzag@zigzag and armchair@armchair DWCNTs exhibit larger friction forces and smaller normal forces compared to those of chiral@chiral DWCNTs.