Cargando…

Large-Scale Fabrication of Porous Gold Nanowires via Laser Interference Lithography and Dealloying of Gold–Silver Nano-Alloys

In this work, we report on an efficient approach to fabricating large-area and uniform planar arrays of highly ordered nanoporous gold nanowires. The approach consists in dealloying Au–Ag alloy nanowires in concentrated nitric acid. The Au–Ag alloy nanowires were obtained by thermal annealing at 800...

Descripción completa

Detalles Bibliográficos
Autores principales: Chauvin, Adrien, Stephant, Nicolas, Du, Ke, Ding, Junjun, Wathuthanthri, Ishan, Choi, Chang-Hwan, Tessier, Pierre-Yves, El Mel, Abdel-Aziz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190193/
http://dx.doi.org/10.3390/mi8060168
Descripción
Sumario:In this work, we report on an efficient approach to fabricating large-area and uniform planar arrays of highly ordered nanoporous gold nanowires. The approach consists in dealloying Au–Ag alloy nanowires in concentrated nitric acid. The Au–Ag alloy nanowires were obtained by thermal annealing at 800 °C for 2 h of Au/Ag stacked nanoribbons prepared by subsequent evaporation of silver and gold through a nanograted photoresist layer serving as a mask for a lift-off process. Laser interference lithography was employed for the nanopatterning of the photoresist layer to create the large-area nanostructured mask. The result shows that for a low Au-to-Ag ratio of 1, the nanowires tend to cracks during the dealloying due to the internal residual stress generated during the dealloying process, whereas the increase of the Au-to-Ag ratio to 3 can overcome the drawback and successfully leads to the obtainment of an array of highly ordered nanoporous gold nanowires. Nanoporous gold nanowires with such well-regulated organization on a wafer-scale planar substrate are of great significance in many applications including sensors and actuators.