Cargando…

Electrode Cooling Effect on Out-Of-Phase Electrothermal Streaming in Rotating Electric Fields

In this work, we focus on investigating electrothermal flow in rotating electric fields (ROT-ETF), with primary attention paid to the horizontal traveling-wave electrothermal (TWET) vortex induced at the center of the electric field. The frequency-dependent flow profiles in the microdevice are analy...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Weiyu, Ren, Yukun, Tao, Ye, Chen, Xiaoming, Wu, Qisheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190253/
https://www.ncbi.nlm.nih.gov/pubmed/30400517
http://dx.doi.org/10.3390/mi8110327
_version_ 1783363527576125440
author Liu, Weiyu
Ren, Yukun
Tao, Ye
Chen, Xiaoming
Wu, Qisheng
author_facet Liu, Weiyu
Ren, Yukun
Tao, Ye
Chen, Xiaoming
Wu, Qisheng
author_sort Liu, Weiyu
collection PubMed
description In this work, we focus on investigating electrothermal flow in rotating electric fields (ROT-ETF), with primary attention paid to the horizontal traveling-wave electrothermal (TWET) vortex induced at the center of the electric field. The frequency-dependent flow profiles in the microdevice are analyzed using different heat transfer models. Accordingly, we address in particular the importance of electrode cooling in ROT-ETF as metal electrodes of high thermal conductivity, while substrate material of low heat dissipation capability is employed to develop such microfluidic chips. Under this circumstance, cooling of electrode array due to external natural convection on millimeter-scale electrode pads for external wire connection occurs and makes the internal temperature maxima shift from the electrode plane to a bit of distance right above the cross-shaped interelectrode gaps, giving rise to reversal of flow rotation from a typical repulsion-type to attraction-type induction vortex, which is in good accordance with our experimental observations of co-field TWET streaming at frequencies in the order of reciprocal charge relaxation time of the bulk fluid. These results point out a way to make a correct interpretation of out-of-phase electrothermal streaming behavior, which holds great potential for handing high-conductivity analytes in modern microfluidic systems.
format Online
Article
Text
id pubmed-6190253
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-61902532018-11-01 Electrode Cooling Effect on Out-Of-Phase Electrothermal Streaming in Rotating Electric Fields Liu, Weiyu Ren, Yukun Tao, Ye Chen, Xiaoming Wu, Qisheng Micromachines (Basel) Article In this work, we focus on investigating electrothermal flow in rotating electric fields (ROT-ETF), with primary attention paid to the horizontal traveling-wave electrothermal (TWET) vortex induced at the center of the electric field. The frequency-dependent flow profiles in the microdevice are analyzed using different heat transfer models. Accordingly, we address in particular the importance of electrode cooling in ROT-ETF as metal electrodes of high thermal conductivity, while substrate material of low heat dissipation capability is employed to develop such microfluidic chips. Under this circumstance, cooling of electrode array due to external natural convection on millimeter-scale electrode pads for external wire connection occurs and makes the internal temperature maxima shift from the electrode plane to a bit of distance right above the cross-shaped interelectrode gaps, giving rise to reversal of flow rotation from a typical repulsion-type to attraction-type induction vortex, which is in good accordance with our experimental observations of co-field TWET streaming at frequencies in the order of reciprocal charge relaxation time of the bulk fluid. These results point out a way to make a correct interpretation of out-of-phase electrothermal streaming behavior, which holds great potential for handing high-conductivity analytes in modern microfluidic systems. MDPI 2017-11-06 /pmc/articles/PMC6190253/ /pubmed/30400517 http://dx.doi.org/10.3390/mi8110327 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liu, Weiyu
Ren, Yukun
Tao, Ye
Chen, Xiaoming
Wu, Qisheng
Electrode Cooling Effect on Out-Of-Phase Electrothermal Streaming in Rotating Electric Fields
title Electrode Cooling Effect on Out-Of-Phase Electrothermal Streaming in Rotating Electric Fields
title_full Electrode Cooling Effect on Out-Of-Phase Electrothermal Streaming in Rotating Electric Fields
title_fullStr Electrode Cooling Effect on Out-Of-Phase Electrothermal Streaming in Rotating Electric Fields
title_full_unstemmed Electrode Cooling Effect on Out-Of-Phase Electrothermal Streaming in Rotating Electric Fields
title_short Electrode Cooling Effect on Out-Of-Phase Electrothermal Streaming in Rotating Electric Fields
title_sort electrode cooling effect on out-of-phase electrothermal streaming in rotating electric fields
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190253/
https://www.ncbi.nlm.nih.gov/pubmed/30400517
http://dx.doi.org/10.3390/mi8110327
work_keys_str_mv AT liuweiyu electrodecoolingeffectonoutofphaseelectrothermalstreaminginrotatingelectricfields
AT renyukun electrodecoolingeffectonoutofphaseelectrothermalstreaminginrotatingelectricfields
AT taoye electrodecoolingeffectonoutofphaseelectrothermalstreaminginrotatingelectricfields
AT chenxiaoming electrodecoolingeffectonoutofphaseelectrothermalstreaminginrotatingelectricfields
AT wuqisheng electrodecoolingeffectonoutofphaseelectrothermalstreaminginrotatingelectricfields