Cargando…
Magnetophoretic Sorting of Single Cell-Containing Microdroplets
Droplet microfluidics is a promising tool for single-cell analysis since single cell can be comparted inside a tiny volume. However, droplet encapsulation of single cells still remains a challenging issue due to the low ratio of droplets containing single cells. Here, we introduce a simple and robus...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190288/ https://www.ncbi.nlm.nih.gov/pubmed/30407429 http://dx.doi.org/10.3390/mi7040056 |
Sumario: | Droplet microfluidics is a promising tool for single-cell analysis since single cell can be comparted inside a tiny volume. However, droplet encapsulation of single cells still remains a challenging issue due to the low ratio of droplets containing single cells. Here, we introduce a simple and robust single cell sorting platform based on a magnetophoretic method using monodisperse magnetic nanoparticles (MNPs) and droplet microfluidics with >94% purity. There is an approximately equal amount of MNPs in the same-sized droplet, which has the same magnetic force under the magnetic field. However, the droplets containing single cells have a reduced number of MNPs, as much as the volume of the cell inside the droplet, resulting in a low magnetic force. Based on this simple principle, this platform enables the separation of single cell-encapsulated droplets from the droplets with no cells. Additionally, this device uses only a permanent magnet without any complex additional apparatus; hence, this new platform can be integrated into a single cell analysis system considering its effectiveness and convenience. |
---|