Cargando…

Magnetophoretic Sorting of Single Cell-Containing Microdroplets

Droplet microfluidics is a promising tool for single-cell analysis since single cell can be comparted inside a tiny volume. However, droplet encapsulation of single cells still remains a challenging issue due to the low ratio of droplets containing single cells. Here, we introduce a simple and robus...

Descripción completa

Detalles Bibliográficos
Autores principales: Jo, Younggeun, Shen, Fengshan, Hahn, Young Ki, Park, Ji-Ho, Park, Je-Kyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190288/
https://www.ncbi.nlm.nih.gov/pubmed/30407429
http://dx.doi.org/10.3390/mi7040056
Descripción
Sumario:Droplet microfluidics is a promising tool for single-cell analysis since single cell can be comparted inside a tiny volume. However, droplet encapsulation of single cells still remains a challenging issue due to the low ratio of droplets containing single cells. Here, we introduce a simple and robust single cell sorting platform based on a magnetophoretic method using monodisperse magnetic nanoparticles (MNPs) and droplet microfluidics with >94% purity. There is an approximately equal amount of MNPs in the same-sized droplet, which has the same magnetic force under the magnetic field. However, the droplets containing single cells have a reduced number of MNPs, as much as the volume of the cell inside the droplet, resulting in a low magnetic force. Based on this simple principle, this platform enables the separation of single cell-encapsulated droplets from the droplets with no cells. Additionally, this device uses only a permanent magnet without any complex additional apparatus; hence, this new platform can be integrated into a single cell analysis system considering its effectiveness and convenience.