Cargando…
An Enhanced Robust Control Algorithm Based on CNF and ISM for the MEMS Micromirror against Input Saturation and Disturbance
Input saturation is a widespread phenomenon in the field of instrumentation, and is harmful to performance and robustness. In this paper, a control design framework based on composite nonlinear feedback (CNF) and integral sliding mode (ISM) technique is proposed for a MEMS micromirror to improve its...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190297/ https://www.ncbi.nlm.nih.gov/pubmed/30400516 http://dx.doi.org/10.3390/mi8110326 |
Sumario: | Input saturation is a widespread phenomenon in the field of instrumentation, and is harmful to performance and robustness. In this paper, a control design framework based on composite nonlinear feedback (CNF) and integral sliding mode (ISM) technique is proposed for a MEMS micromirror to improve its performance under input saturation. To make the framework more effective, some essential improvements are supplied. With the application of the proposed design framework, the micromirror under input saturation and time-varying disturbances can achieve precise positioning with satisfactory transient performance compared with the open-loop performance. |
---|