Cargando…

3D–4D Printed Objects: New Bioactive Material Opportunities

One of the main objectives of 3D printing in health science is to mimic biological functions. To reach this goal, a 4D printing might be added to 3D-printed objects which will be characterized by their abilities to evolve over time and under external stimulus by modifying their shape, properties or...

Descripción completa

Detalles Bibliográficos
Autores principales: Mandon, Céline A., Blum, Loïc J., Marquette, Christophe A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190303/
http://dx.doi.org/10.3390/mi8040102
Descripción
Sumario:One of the main objectives of 3D printing in health science is to mimic biological functions. To reach this goal, a 4D printing might be added to 3D-printed objects which will be characterized by their abilities to evolve over time and under external stimulus by modifying their shape, properties or composition. Such abilities are the promise of great opportunities for biosensing and biomimetic systems to progress towards more physiological mimicking systems. Herein are presented two 4D printing examples for biosensing and biomimetic applications using 3D-printed enzymes. The first one is based on the printing of the enzymatic couple glucose oxidase/peroxidase for the chemiluminescent detection of glucose, and the second uses printed alkaline phosphatase to generate in situ programmed and localized calcification of the printed object.