Cargando…
Development of a Multi-Stage Electroosmotic Flow Pump Using Liquid Metal Electrodes †
Injection of liquid metal into a polydimethylsiloxane (PDMS) channel can provide a simple, cheap, and fast method to fabricate a noncontact electrode for micro electroosmotic flow (EOF) pumps. In this study, a multi-stage EOF pump using liquid metal noncontact electrodes was proposed and demonstrate...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190331/ https://www.ncbi.nlm.nih.gov/pubmed/30404339 http://dx.doi.org/10.3390/mi7090165 |
Sumario: | Injection of liquid metal into a polydimethylsiloxane (PDMS) channel can provide a simple, cheap, and fast method to fabricate a noncontact electrode for micro electroosmotic flow (EOF) pumps. In this study, a multi-stage EOF pump using liquid metal noncontact electrodes was proposed and demonstrated for high-flow-velocity applications. To test the pumping performance of this EOF pump and measure the flow velocity, fluorescent particles were added into deionized (DI) water to trace the flow. According to the experimental results, the pump with a five-stage design can drive a water flow of 5.57 μm/s at 10 V, while the PDMS gap between the electrode and the pumping channel is 20 μm. To provide the guidance for the pump design, parametric studies were performed and fully discussed, such as the PDMS gap, pumping channel dimension, and stage number. This multi-stage EOF pump shows potential for many high-flow-velocity microfluidic applications. |
---|