Cargando…

An Automated Microfluidic System for the Generation of Droplet Interface Bilayer Networks

Networks of droplets, in which aqueous compartments are separated by lipid bilayers, have shown great potential as a model for biological transmembrane communication. We present a microfluidic system which allows for on-demand generation of droplets that are hydrodynamically locked in a trapping str...

Descripción completa

Detalles Bibliográficos
Autores principales: Czekalska, Magdalena A., Kaminski, Tomasz S., Horka, Michal, Jakiela, Slawomir, Garstecki, Piotr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190347/
http://dx.doi.org/10.3390/mi8030093
Descripción
Sumario:Networks of droplets, in which aqueous compartments are separated by lipid bilayers, have shown great potential as a model for biological transmembrane communication. We present a microfluidic system which allows for on-demand generation of droplets that are hydrodynamically locked in a trapping structure. As a result, the system enables the formation of a network of four droplets connected via lipid bilayers and the positions of each droplet in the network can be controlled thanks to automation of microfluidic operations. We perform electrophysiological measurements of ionic currents indicating interactions between nanopores and small molecules to prove the potential of the device in screening of the inhibitors acting on membrane proteins. We also demonstrate, for the first time, a microfluidic droplet interface bilayer (DIB) system in which the testing of inhibitors can be performed without direct contact between the tested sample and the electrodes recording picoampere currents.