Cargando…

An Enhanced Electroosmotic Micromixer with an Efficient Asymmetric Lateral Structure

Homogeneous and rapid mixing in microfluidic devices is difficult to accomplish, owing to the low Reynolds number associated with most flows in microfluidic channels. Here, an efficient electroosmotic micromixer based on a carefully designed lateral structure is demonstrated. The electroosmotic flow...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Teng, Wang, Hanlin, Shi, Liuyong, Liu, Zhenyu, Joo, Sang Woo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190438/
https://www.ncbi.nlm.nih.gov/pubmed/30404389
http://dx.doi.org/10.3390/mi7120218
Descripción
Sumario:Homogeneous and rapid mixing in microfluidic devices is difficult to accomplish, owing to the low Reynolds number associated with most flows in microfluidic channels. Here, an efficient electroosmotic micromixer based on a carefully designed lateral structure is demonstrated. The electroosmotic flow in this mixer with an asymmetrical structure induces enhanced disturbance in the micro channel, helping the fluid streams’ folding and stretching, thereby enabling appreciable mixing. Quantitative analysis of the mixing efficiency with respect to the potential applied and the flow rate suggests that the electroosmotic microfluidic mixer developed in the present work can achieve efficient mixing with low applied potential.