Cargando…

Data Mapping From Food Diaries to Augment the Amount and Frequency of Foods Measured Using Short Food Questionnaires

Collecting accurate and detailed dietary intake data is costly at a national level. Accordingly, limited dietary assessment tools such as Short Food Questionnaires (SFQs) are increasingly used in large surveys. This paper describes a novel method linking matched datasets to improve the quality of di...

Descripción completa

Detalles Bibliográficos
Autores principales: Crowe, Michael, O'Sullivan, Michael, McNulty, Breige A., Cassetti, Oscar, O'Sullivan, Aifric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190565/
https://www.ncbi.nlm.nih.gov/pubmed/30356824
http://dx.doi.org/10.3389/fnut.2018.00082
_version_ 1783363599382609920
author Crowe, Michael
O'Sullivan, Michael
McNulty, Breige A.
Cassetti, Oscar
O'Sullivan, Aifric
author_facet Crowe, Michael
O'Sullivan, Michael
McNulty, Breige A.
Cassetti, Oscar
O'Sullivan, Aifric
author_sort Crowe, Michael
collection PubMed
description Collecting accurate and detailed dietary intake data is costly at a national level. Accordingly, limited dietary assessment tools such as Short Food Questionnaires (SFQs) are increasingly used in large surveys. This paper describes a novel method linking matched datasets to improve the quality of dietary data collected. Growing Up in Ireland (GUI) is a nationally representative longitudinal study of infants in the Republic of Ireland which used a SFQ (with no portion sizes) to assess the intake of “healthy” and “unhealthy” food and drink by 3 years old preschool children. The National Preschool Nutrition Survey (NPNS) provides the most accurate estimates available for dietary intake of young children in Ireland using a detailed 4 days weighed food diary. A mapping algorithm was applied using food name, cooking method, and food description to fill all GUI food groups with information from the NPNS food datafile which included the target variables, frequency, and amount. The augmented data were analyzed to examine all food groups described in NPNS and GUI and what proportion of foods were covered, non-covered, or partially-covered by GUI food groups, as a percentage of the total number of consumptions. The term non-covered indicated a specific food consumption that could not be mapped using a GUI food group. “High sugar” food items that were non-covered included ready-to-eat breakfast cereals, fruit juice, sugars, syrups, preserves and sweeteners, and ice-cream. The average proportion of consumption frequency and amount of foods not covered by GUI was 44 and 34%, respectively. Through mapping food codes in this manner, it was possible, using density plots, to visualize the relative performance of the brief dietary instrument (SFQ) compared to the more detailed food diary (FD). The SFQ did not capture a substantial portion of habitual foods consumed by 3-year olds in Ireland. Researchers interested in focussing on specific foods, could use this approach to assess the proportion of foods covered, non-covered, or partially-covered by reference to the mapped food database. These results can be used to improve SFQs for future studies and improve the capacity to identify diet-disease relationships.
format Online
Article
Text
id pubmed-6190565
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-61905652018-10-23 Data Mapping From Food Diaries to Augment the Amount and Frequency of Foods Measured Using Short Food Questionnaires Crowe, Michael O'Sullivan, Michael McNulty, Breige A. Cassetti, Oscar O'Sullivan, Aifric Front Nutr Nutrition Collecting accurate and detailed dietary intake data is costly at a national level. Accordingly, limited dietary assessment tools such as Short Food Questionnaires (SFQs) are increasingly used in large surveys. This paper describes a novel method linking matched datasets to improve the quality of dietary data collected. Growing Up in Ireland (GUI) is a nationally representative longitudinal study of infants in the Republic of Ireland which used a SFQ (with no portion sizes) to assess the intake of “healthy” and “unhealthy” food and drink by 3 years old preschool children. The National Preschool Nutrition Survey (NPNS) provides the most accurate estimates available for dietary intake of young children in Ireland using a detailed 4 days weighed food diary. A mapping algorithm was applied using food name, cooking method, and food description to fill all GUI food groups with information from the NPNS food datafile which included the target variables, frequency, and amount. The augmented data were analyzed to examine all food groups described in NPNS and GUI and what proportion of foods were covered, non-covered, or partially-covered by GUI food groups, as a percentage of the total number of consumptions. The term non-covered indicated a specific food consumption that could not be mapped using a GUI food group. “High sugar” food items that were non-covered included ready-to-eat breakfast cereals, fruit juice, sugars, syrups, preserves and sweeteners, and ice-cream. The average proportion of consumption frequency and amount of foods not covered by GUI was 44 and 34%, respectively. Through mapping food codes in this manner, it was possible, using density plots, to visualize the relative performance of the brief dietary instrument (SFQ) compared to the more detailed food diary (FD). The SFQ did not capture a substantial portion of habitual foods consumed by 3-year olds in Ireland. Researchers interested in focussing on specific foods, could use this approach to assess the proportion of foods covered, non-covered, or partially-covered by reference to the mapped food database. These results can be used to improve SFQs for future studies and improve the capacity to identify diet-disease relationships. Frontiers Media S.A. 2018-09-07 /pmc/articles/PMC6190565/ /pubmed/30356824 http://dx.doi.org/10.3389/fnut.2018.00082 Text en Copyright © 2018 Crowe, O'Sullivan, McNulty, Cassetti and O'Sullivan. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Nutrition
Crowe, Michael
O'Sullivan, Michael
McNulty, Breige A.
Cassetti, Oscar
O'Sullivan, Aifric
Data Mapping From Food Diaries to Augment the Amount and Frequency of Foods Measured Using Short Food Questionnaires
title Data Mapping From Food Diaries to Augment the Amount and Frequency of Foods Measured Using Short Food Questionnaires
title_full Data Mapping From Food Diaries to Augment the Amount and Frequency of Foods Measured Using Short Food Questionnaires
title_fullStr Data Mapping From Food Diaries to Augment the Amount and Frequency of Foods Measured Using Short Food Questionnaires
title_full_unstemmed Data Mapping From Food Diaries to Augment the Amount and Frequency of Foods Measured Using Short Food Questionnaires
title_short Data Mapping From Food Diaries to Augment the Amount and Frequency of Foods Measured Using Short Food Questionnaires
title_sort data mapping from food diaries to augment the amount and frequency of foods measured using short food questionnaires
topic Nutrition
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190565/
https://www.ncbi.nlm.nih.gov/pubmed/30356824
http://dx.doi.org/10.3389/fnut.2018.00082
work_keys_str_mv AT crowemichael datamappingfromfooddiariestoaugmenttheamountandfrequencyoffoodsmeasuredusingshortfoodquestionnaires
AT osullivanmichael datamappingfromfooddiariestoaugmenttheamountandfrequencyoffoodsmeasuredusingshortfoodquestionnaires
AT mcnultybreigea datamappingfromfooddiariestoaugmenttheamountandfrequencyoffoodsmeasuredusingshortfoodquestionnaires
AT cassettioscar datamappingfromfooddiariestoaugmenttheamountandfrequencyoffoodsmeasuredusingshortfoodquestionnaires
AT osullivanaifric datamappingfromfooddiariestoaugmenttheamountandfrequencyoffoodsmeasuredusingshortfoodquestionnaires