Cargando…
Radio-pathomic Maps of Epithelium and Lumen Density Predict the Location of High-Grade Prostate Cancer
PURPOSE: This study aims to combine multiparametric magnetic resonance imaging (MRI) and digitized pathology with machine learning to generate predictive maps of histologic features for prostate cancer localization. METHODS AND MATERIALS: Thirty-nine patients underwent MRI prior to prostatectomy. Af...
Autores principales: | McGarry, Sean D., Hurrell, Sarah L., Iczkowski, Kenneth A., Hall, William, Kaczmarowski, Amy L., Banerjee, Anjishnu, Keuter, Tucker, Jacobsohn, Kenneth, Bukowy, John D., Nevalainen, Marja T., Hohenwalter, Mark D., See, William A., LaViolette, Peter S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190585/ https://www.ncbi.nlm.nih.gov/pubmed/29908785 http://dx.doi.org/10.1016/j.ijrobp.2018.04.044 |
Ejemplares similares
-
2555 Predictive cytological topography (PiCT): A radiopathomics approach to mapping prostate cancer
por: McGarry, Sean D., et al.
Publicado: (2018) -
Radio-pathomic mapping model generated using annotations from five pathologists reliably distinguishes high-grade prostate cancer
por: McGarry, Sean D., et al.
Publicado: (2020) -
Optimized b-value selection for the discrimination of prostate cancer grades, including the cribriform pattern, using diffusion weighted imaging
por: Hurrell, Sarah L., et al.
Publicado: (2017) -
Gleason Probability Maps: A Radiomics Tool for Mapping Prostate Cancer Likelihood in MRI Space
por: McGarry, Sean D., et al.
Publicado: (2019) -
Magnetic Resonance Imaging-Based Radiomic Profiles Predict Patient Prognosis in Newly Diagnosed Glioblastoma Before Therapy
por: McGarry, Sean D., et al.
Publicado: (2016)