Cargando…

Identification of influential proteins in the classical retinoic acid signaling pathway

BACKGROUND: In the classical pathway of retinoic acid (RA) mediated gene transcription, RA binds to a nuclear hormone receptor dimer composed of retinoic acid receptor (RAR) and retinoid X receptor (RXR), to induce the expression of its downstream target genes. In addition to nuclear receptors, ther...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghaffari, Hamed, Petzold, Linda R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190658/
https://www.ncbi.nlm.nih.gov/pubmed/30322383
http://dx.doi.org/10.1186/s12976-018-0088-7
Descripción
Sumario:BACKGROUND: In the classical pathway of retinoic acid (RA) mediated gene transcription, RA binds to a nuclear hormone receptor dimer composed of retinoic acid receptor (RAR) and retinoid X receptor (RXR), to induce the expression of its downstream target genes. In addition to nuclear receptors, there are other intracellular RA binding proteins such as cellular retinoic acid binding proteins (CRABP1 and CRABP2) and cytochrome P450 (CYP) enzymes, whose contributions to the RA signaling pathway have not been fully understood. The objective of this study was to compare the significance of various RA binding receptors, i.e. CRABP1, CRABP2, CYP and RAR in the RA signaling pathway. In this regard, we developed a mathematical model of the RA pathway, which is one of the few models, if not the only one, that includes all main intracellular RA binding receptors. We then performed a global sensitivity analysis (GSA) to investigate the contribution of the RA receptors to RA-induced mRNA production, when the cells were treated with a wide range of RA levels, from physiological to pharmacological concentrations. RESULTS: Our results show that CRABP2 and RAR are the most and the least important proteins, respectively, in controlling the model performance at physiological concentrations of RA (1–10 nM). However, at higher concentrations of RA, CYP and RAR are the most sensitive parameters of the system. Furthermore, we found that depending on the concentrations of all RA binding proteins, the rate of metabolism of RA can either change or remain constant following RA therapy. The cellular levels of CRABP1 are more important than that of CRABP2 in controlling RA metabolite formation at pharmacological conditions (RA = 0.1–1 μM). Finally, our results indicate a significant negative correlation between total mRNA production and total RA metabolite formation at pharmacological levels of RA. CONCLUSIONS: Our simulations indicate that the significance of the RA binding proteins in the RA pathway of gene expression strongly depends on intracellular concentration of RA. This study not only can explain why various cell types respond to RA therapy differently, but also can potentially help develop pharmacological methods to increase the efficacy of the drug. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12976-018-0088-7) contains supplementary material, which is available to authorized users.