Cargando…

A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces

Recent advancements in brain computer interfaces (BCI) have demonstrated control of robotic systems by mental processes alone. Together with invasive BCI, electroencephalographic (EEG) BCI represent an important direction in the development of BCI systems. In the context of EEG BCI, the processing o...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaya, Murat, Binli, Mustafa Kemal, Ozbay, Erkan, Yanar, Hilmi, Mishchenko, Yuriy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190745/
https://www.ncbi.nlm.nih.gov/pubmed/30325349
http://dx.doi.org/10.1038/sdata.2018.211
_version_ 1783363619995516928
author Kaya, Murat
Binli, Mustafa Kemal
Ozbay, Erkan
Yanar, Hilmi
Mishchenko, Yuriy
author_facet Kaya, Murat
Binli, Mustafa Kemal
Ozbay, Erkan
Yanar, Hilmi
Mishchenko, Yuriy
author_sort Kaya, Murat
collection PubMed
description Recent advancements in brain computer interfaces (BCI) have demonstrated control of robotic systems by mental processes alone. Together with invasive BCI, electroencephalographic (EEG) BCI represent an important direction in the development of BCI systems. In the context of EEG BCI, the processing of EEG data is the key challenge. Unfortunately, advances in that direction have been complicated by a lack of large and uniform datasets that could be used to design and evaluate different data processing approaches. In this work, we release a large set of EEG BCI data collected during the development of a slow cortical potentials-based EEG BCI. The dataset contains 60 h of EEG recordings, 13 participants, 75 recording sessions, 201 individual EEG BCI interaction session-segments, and over 60 000 examples of motor imageries in 4 interaction paradigms. The current dataset presents one of the largest EEG BCI datasets publically available to date.
format Online
Article
Text
id pubmed-6190745
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-61907452018-10-29 A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces Kaya, Murat Binli, Mustafa Kemal Ozbay, Erkan Yanar, Hilmi Mishchenko, Yuriy Sci Data Data Descriptor Recent advancements in brain computer interfaces (BCI) have demonstrated control of robotic systems by mental processes alone. Together with invasive BCI, electroencephalographic (EEG) BCI represent an important direction in the development of BCI systems. In the context of EEG BCI, the processing of EEG data is the key challenge. Unfortunately, advances in that direction have been complicated by a lack of large and uniform datasets that could be used to design and evaluate different data processing approaches. In this work, we release a large set of EEG BCI data collected during the development of a slow cortical potentials-based EEG BCI. The dataset contains 60 h of EEG recordings, 13 participants, 75 recording sessions, 201 individual EEG BCI interaction session-segments, and over 60 000 examples of motor imageries in 4 interaction paradigms. The current dataset presents one of the largest EEG BCI datasets publically available to date. Nature Publishing Group 2018-10-16 /pmc/articles/PMC6190745/ /pubmed/30325349 http://dx.doi.org/10.1038/sdata.2018.211 Text en Copyright © 2018, The Author(s) http://creativecommons.org/licenses/by/4.0/ Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files made available in this article.
spellingShingle Data Descriptor
Kaya, Murat
Binli, Mustafa Kemal
Ozbay, Erkan
Yanar, Hilmi
Mishchenko, Yuriy
A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
title A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
title_full A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
title_fullStr A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
title_full_unstemmed A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
title_short A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
title_sort large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190745/
https://www.ncbi.nlm.nih.gov/pubmed/30325349
http://dx.doi.org/10.1038/sdata.2018.211
work_keys_str_mv AT kayamurat alargeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces
AT binlimustafakemal alargeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces
AT ozbayerkan alargeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces
AT yanarhilmi alargeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces
AT mishchenkoyuriy alargeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces
AT kayamurat largeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces
AT binlimustafakemal largeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces
AT ozbayerkan largeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces
AT yanarhilmi largeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces
AT mishchenkoyuriy largeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces