Cargando…
A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
Recent advancements in brain computer interfaces (BCI) have demonstrated control of robotic systems by mental processes alone. Together with invasive BCI, electroencephalographic (EEG) BCI represent an important direction in the development of BCI systems. In the context of EEG BCI, the processing o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190745/ https://www.ncbi.nlm.nih.gov/pubmed/30325349 http://dx.doi.org/10.1038/sdata.2018.211 |
_version_ | 1783363619995516928 |
---|---|
author | Kaya, Murat Binli, Mustafa Kemal Ozbay, Erkan Yanar, Hilmi Mishchenko, Yuriy |
author_facet | Kaya, Murat Binli, Mustafa Kemal Ozbay, Erkan Yanar, Hilmi Mishchenko, Yuriy |
author_sort | Kaya, Murat |
collection | PubMed |
description | Recent advancements in brain computer interfaces (BCI) have demonstrated control of robotic systems by mental processes alone. Together with invasive BCI, electroencephalographic (EEG) BCI represent an important direction in the development of BCI systems. In the context of EEG BCI, the processing of EEG data is the key challenge. Unfortunately, advances in that direction have been complicated by a lack of large and uniform datasets that could be used to design and evaluate different data processing approaches. In this work, we release a large set of EEG BCI data collected during the development of a slow cortical potentials-based EEG BCI. The dataset contains 60 h of EEG recordings, 13 participants, 75 recording sessions, 201 individual EEG BCI interaction session-segments, and over 60 000 examples of motor imageries in 4 interaction paradigms. The current dataset presents one of the largest EEG BCI datasets publically available to date. |
format | Online Article Text |
id | pubmed-6190745 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-61907452018-10-29 A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces Kaya, Murat Binli, Mustafa Kemal Ozbay, Erkan Yanar, Hilmi Mishchenko, Yuriy Sci Data Data Descriptor Recent advancements in brain computer interfaces (BCI) have demonstrated control of robotic systems by mental processes alone. Together with invasive BCI, electroencephalographic (EEG) BCI represent an important direction in the development of BCI systems. In the context of EEG BCI, the processing of EEG data is the key challenge. Unfortunately, advances in that direction have been complicated by a lack of large and uniform datasets that could be used to design and evaluate different data processing approaches. In this work, we release a large set of EEG BCI data collected during the development of a slow cortical potentials-based EEG BCI. The dataset contains 60 h of EEG recordings, 13 participants, 75 recording sessions, 201 individual EEG BCI interaction session-segments, and over 60 000 examples of motor imageries in 4 interaction paradigms. The current dataset presents one of the largest EEG BCI datasets publically available to date. Nature Publishing Group 2018-10-16 /pmc/articles/PMC6190745/ /pubmed/30325349 http://dx.doi.org/10.1038/sdata.2018.211 Text en Copyright © 2018, The Author(s) http://creativecommons.org/licenses/by/4.0/ Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files made available in this article. |
spellingShingle | Data Descriptor Kaya, Murat Binli, Mustafa Kemal Ozbay, Erkan Yanar, Hilmi Mishchenko, Yuriy A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces |
title | A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces |
title_full | A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces |
title_fullStr | A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces |
title_full_unstemmed | A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces |
title_short | A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces |
title_sort | large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces |
topic | Data Descriptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190745/ https://www.ncbi.nlm.nih.gov/pubmed/30325349 http://dx.doi.org/10.1038/sdata.2018.211 |
work_keys_str_mv | AT kayamurat alargeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces AT binlimustafakemal alargeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces AT ozbayerkan alargeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces AT yanarhilmi alargeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces AT mishchenkoyuriy alargeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces AT kayamurat largeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces AT binlimustafakemal largeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces AT ozbayerkan largeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces AT yanarhilmi largeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces AT mishchenkoyuriy largeelectroencephalographicmotorimagerydatasetforelectroencephalographicbraincomputerinterfaces |