Cargando…
A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
Recent advancements in brain computer interfaces (BCI) have demonstrated control of robotic systems by mental processes alone. Together with invasive BCI, electroencephalographic (EEG) BCI represent an important direction in the development of BCI systems. In the context of EEG BCI, the processing o...
Autores principales: | Kaya, Murat, Binli, Mustafa Kemal, Ozbay, Erkan, Yanar, Hilmi, Mishchenko, Yuriy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190745/ https://www.ncbi.nlm.nih.gov/pubmed/30325349 http://dx.doi.org/10.1038/sdata.2018.211 |
Ejemplares similares
-
A large EEG dataset for studying cross-session variability in motor imagery brain-computer interface
por: Ma, Jun, et al.
Publicado: (2022) -
A magnetoencephalography dataset for motor and cognitive imagery-based brain-computer interface
por: Rathee, Dheeraj, et al.
Publicado: (2021) -
A large EEG database with users’ profile information for motor imagery brain-computer interface research
por: Dreyer, Pauline, et al.
Publicado: (2023) -
Dimensionality Reduction and Channel Selection of Motor Imagery Electroencephalographic Data
por: Naeem, Muhammad, et al.
Publicado: (2009) -
Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals
por: Batres-Mendoza, Patricia, et al.
Publicado: (2016)