Cargando…
Tropomodulin’s Actin-Binding Abilities Are Required to Modulate Dendrite Development
There are many unanswered questions about the roles of the actin pointed end capping and actin nucleation by tropomodulins (Tmod) in regulating neural morphology. Previous studies indicate that Tmod1 and Tmod2 regulate morphology of the dendritic arbor and spines. Tmod3, which is expressed in the br...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190845/ https://www.ncbi.nlm.nih.gov/pubmed/30356860 http://dx.doi.org/10.3389/fnmol.2018.00357 |
_version_ | 1783363631281340416 |
---|---|
author | Gray, Kevin T. Stefen, Holly Ly, Thu N. A. Keller, Christopher J. Colpan, Mert Wayman, Gary A. Pate, Edward Fath, Thomas Kostyukova, Alla S. |
author_facet | Gray, Kevin T. Stefen, Holly Ly, Thu N. A. Keller, Christopher J. Colpan, Mert Wayman, Gary A. Pate, Edward Fath, Thomas Kostyukova, Alla S. |
author_sort | Gray, Kevin T. |
collection | PubMed |
description | There are many unanswered questions about the roles of the actin pointed end capping and actin nucleation by tropomodulins (Tmod) in regulating neural morphology. Previous studies indicate that Tmod1 and Tmod2 regulate morphology of the dendritic arbor and spines. Tmod3, which is expressed in the brain, had only a minor influence on morphology. Although these studies established a defined role of Tmod in regulating dendritic and synaptic morphology, the mechanisms by which Tmods exert these effects are unknown. Here, we overexpressed a series of mutated forms of Tmod1 and Tmod2 with disrupted actin-binding sites in hippocampal neurons and found that Tmod1 and Tmod2 require both of their actin-binding sites to regulate dendritic morphology and dendritic spine shape. Proximity ligation assays (PLAs) indicate that these mutations impact the interaction of Tmod1 and Tmod2 with tropomyosins Tpm3.1 and Tpm3.2. This impact on Tmod/Tpm interaction may contribute to the morphological changes observed. Finally, we use molecular dynamics simulations (MDS) to characterize the structural changes, caused by mutations in the C-terminal helix of the leucine-rich repeat (LRR) domain of Tmod1 and Tmod2 alone and when bound onto actin monomers. Our results expand our understanding of how neurons utilize the different Tmod isoforms in development. |
format | Online Article Text |
id | pubmed-6190845 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61908452018-10-23 Tropomodulin’s Actin-Binding Abilities Are Required to Modulate Dendrite Development Gray, Kevin T. Stefen, Holly Ly, Thu N. A. Keller, Christopher J. Colpan, Mert Wayman, Gary A. Pate, Edward Fath, Thomas Kostyukova, Alla S. Front Mol Neurosci Neuroscience There are many unanswered questions about the roles of the actin pointed end capping and actin nucleation by tropomodulins (Tmod) in regulating neural morphology. Previous studies indicate that Tmod1 and Tmod2 regulate morphology of the dendritic arbor and spines. Tmod3, which is expressed in the brain, had only a minor influence on morphology. Although these studies established a defined role of Tmod in regulating dendritic and synaptic morphology, the mechanisms by which Tmods exert these effects are unknown. Here, we overexpressed a series of mutated forms of Tmod1 and Tmod2 with disrupted actin-binding sites in hippocampal neurons and found that Tmod1 and Tmod2 require both of their actin-binding sites to regulate dendritic morphology and dendritic spine shape. Proximity ligation assays (PLAs) indicate that these mutations impact the interaction of Tmod1 and Tmod2 with tropomyosins Tpm3.1 and Tpm3.2. This impact on Tmod/Tpm interaction may contribute to the morphological changes observed. Finally, we use molecular dynamics simulations (MDS) to characterize the structural changes, caused by mutations in the C-terminal helix of the leucine-rich repeat (LRR) domain of Tmod1 and Tmod2 alone and when bound onto actin monomers. Our results expand our understanding of how neurons utilize the different Tmod isoforms in development. Frontiers Media S.A. 2018-10-09 /pmc/articles/PMC6190845/ /pubmed/30356860 http://dx.doi.org/10.3389/fnmol.2018.00357 Text en Copyright © 2018 Gray, Stefen, Ly, Keller, Colpan, Wayman, Pate, Fath and Kostyukova. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Gray, Kevin T. Stefen, Holly Ly, Thu N. A. Keller, Christopher J. Colpan, Mert Wayman, Gary A. Pate, Edward Fath, Thomas Kostyukova, Alla S. Tropomodulin’s Actin-Binding Abilities Are Required to Modulate Dendrite Development |
title | Tropomodulin’s Actin-Binding Abilities Are Required to Modulate Dendrite Development |
title_full | Tropomodulin’s Actin-Binding Abilities Are Required to Modulate Dendrite Development |
title_fullStr | Tropomodulin’s Actin-Binding Abilities Are Required to Modulate Dendrite Development |
title_full_unstemmed | Tropomodulin’s Actin-Binding Abilities Are Required to Modulate Dendrite Development |
title_short | Tropomodulin’s Actin-Binding Abilities Are Required to Modulate Dendrite Development |
title_sort | tropomodulin’s actin-binding abilities are required to modulate dendrite development |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190845/ https://www.ncbi.nlm.nih.gov/pubmed/30356860 http://dx.doi.org/10.3389/fnmol.2018.00357 |
work_keys_str_mv | AT graykevint tropomodulinsactinbindingabilitiesarerequiredtomodulatedendritedevelopment AT stefenholly tropomodulinsactinbindingabilitiesarerequiredtomodulatedendritedevelopment AT lythuna tropomodulinsactinbindingabilitiesarerequiredtomodulatedendritedevelopment AT kellerchristopherj tropomodulinsactinbindingabilitiesarerequiredtomodulatedendritedevelopment AT colpanmert tropomodulinsactinbindingabilitiesarerequiredtomodulatedendritedevelopment AT waymangarya tropomodulinsactinbindingabilitiesarerequiredtomodulatedendritedevelopment AT pateedward tropomodulinsactinbindingabilitiesarerequiredtomodulatedendritedevelopment AT faththomas tropomodulinsactinbindingabilitiesarerequiredtomodulatedendritedevelopment AT kostyukovaallas tropomodulinsactinbindingabilitiesarerequiredtomodulatedendritedevelopment |