Cargando…
Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation
Cross-Validation (CV), and out-of-sample performance-estimation protocols in general, are often employed both for (a) selecting the optimal combination of algorithms and values of hyper-parameters (called a configuration) for producing the final predictive model, and (b) estimating the predictive pe...
Autores principales: | Tsamardinos, Ioannis, Greasidou, Elissavet, Borboudakis, Giorgos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191021/ https://www.ncbi.nlm.nih.gov/pubmed/30393425 http://dx.doi.org/10.1007/s10994-018-5714-4 |
Ejemplares similares
-
Extending greedy feature selection algorithms to multiple solutions
por: Borboudakis, Giorgos, et al.
Publicado: (2021) -
Constraint-based causal discovery with mixed data
por: Tsagris, Michail, et al.
Publicado: (2018) -
A greedy feature selection algorithm for Big Data of high dimensionality
por: Tsamardinos, Ioannis, et al.
Publicado: (2018) -
A data driven approach reveals disease similarity on a molecular level
por: Lakiotaki, Kleanthi, et al.
Publicado: (2019) -
Just Add Data: automated predictive modeling for knowledge discovery and feature selection
por: Tsamardinos, Ioannis, et al.
Publicado: (2022)