Cargando…
Constraints on tidal charge of the supermassive black hole at the Galactic Center with trajectories of bright stars
As it was pointed out recently in Hees et al. (Phys Rev Lett 118:211101, 2017), observations of stars near the Galactic Center with current and future facilities provide an unique tool to test general relativity (GR) and alternative theories of gravity in a strong gravitational field regime. In part...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191035/ https://www.ncbi.nlm.nih.gov/pubmed/30839754 http://dx.doi.org/10.1140/epjc/s10052-018-6166-5 |
Sumario: | As it was pointed out recently in Hees et al. (Phys Rev Lett 118:211101, 2017), observations of stars near the Galactic Center with current and future facilities provide an unique tool to test general relativity (GR) and alternative theories of gravity in a strong gravitational field regime. In particular, the authors showed that the Yukawa gravity could be constrained with Keck and TMT observations. Some time ago, Dadhich et al. (Phys Lett B 487:1, 2001) showed that the Reissner–Nordström metric with a tidal charge is naturally appeared in the framework of Randall–Sundrum model with an extra dimension ([Formula: see text] is called tidal charge and it could be negative in such an approach). Astrophysical consequences of presence of black holes with a tidal charge are considerered, in particular, geodesics and shadows in Kerr–Newman braneworld metric are analyzed in Schee and Stuchlík (Intern J Mod Phys D 18:983, 2009), while profiles of emission lines generated by rings orbiting braneworld Kerr black hole are considered in Schee and Stuchlík (Gen Relat Grav 52:1795, 2009). Possible observational signatures of gravitational lensing in a presence of the Reissner–Nordström black hole with a tidal charge at the Galactic Center are discussed in papers (Bin-Nun in Phys Rev D 81:123011, 2010; Bin-Nun in Phys Rev D 82:064009, 2010; Bin-Nun in Class Quant Grav 28:114003, 2011). Here we are following such an approach and we obtain analytical expressions for orbital precession for Reissner–Nordström–de-Sitter solution in post-Newtonian approximation and discuss opportunities to constrain parameters of the metric from observations of bright stars with current and future astrometric observational facilities such as VLT, Keck, GRAVITY, E-ELT and TMT. |
---|