Cargando…

Examining the effect of adverse weather on road transportation using weather and traffic sensors

Adverse weather related to reduced visibility caused by fog and rain can seriously affect the mobility and safety of drivers. It is meaningful to develop effective intelligent transportation system (ITS) strategies to mitigate the negative effects of these different types of adverse weather related...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Yichuan, Jiang, Yuming, Lu, Jian, Zou, Yajie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191113/
https://www.ncbi.nlm.nih.gov/pubmed/30325948
http://dx.doi.org/10.1371/journal.pone.0205409
Descripción
Sumario:Adverse weather related to reduced visibility caused by fog and rain can seriously affect the mobility and safety of drivers. It is meaningful to develop effective intelligent transportation system (ITS) strategies to mitigate the negative effects of these different types of adverse weather related to reduced visibility by investigating the effect of rain and fog on traffic parameters. A number of previous researches focused on analyzing the effect of adverse weather related to reduced visibility by using simulated traffic and weather data. There are few researchers that addressed the impact of adverse weather instances using real-time data. Moreover, this paper conducts comprehensive investigation to clearly compare the changes of driving behavior and traffic parameters in adverse weather including fog and rain using real-time traffic and weather data collected by advanced vehicle-based traffic sensors and weather sensors. After some preliminary analysis, the analysis of variance method (ANOVA) was applied to further compare the significance of effects of these two kinds of adverse weather on traffic parameters. The conditional regression models were employed finally to explore the relationship between these two types of adverse weather and traffic parameters. The results would be beneficial to develop effective intelligent traffic control countermeasures under these different types of adverse weather conditions related to reduced visibility.