Cargando…
Modeling and design of thin bending wooden bilayers
In recent architectural research, thin wooden bilayer laminates capable of self-actuation in response to humidity changes have been proposed as sustainable, programmed, and fully autonomous elements for facades or roofs for shading and climate regulation. Switches, humidistats, or motor elements rep...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191116/ https://www.ncbi.nlm.nih.gov/pubmed/30325938 http://dx.doi.org/10.1371/journal.pone.0205607 |
_version_ | 1783363665628495872 |
---|---|
author | Grönquist, Philippe Wittel, Falk K. Rüggeberg, Markus |
author_facet | Grönquist, Philippe Wittel, Falk K. Rüggeberg, Markus |
author_sort | Grönquist, Philippe |
collection | PubMed |
description | In recent architectural research, thin wooden bilayer laminates capable of self-actuation in response to humidity changes have been proposed as sustainable, programmed, and fully autonomous elements for facades or roofs for shading and climate regulation. Switches, humidistats, or motor elements represent further promising applications. Proper wood-adapted prediction models for actuation, however, are still missing. Here, a simple model that can predict bending deformation as a function of moisture content change, wood material parameters, and geometry is presented. We consider material anisotropy and moisture-dependency of elastic mechanical parameters. The model is validated using experimental data collected on bilayers made out of European beech wood. Furthermore, we present essential design aspects in view of facilitated industrial applications. Layer thickness, thickness-ratio, and growth ring angle of the wood in single layers are assessed by their effect on curvature, stored elastic energy, and generated axial stress. A sensitivity analysis is conducted to identify primary curvature-impacting model input parameters. |
format | Online Article Text |
id | pubmed-6191116 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-61911162018-10-25 Modeling and design of thin bending wooden bilayers Grönquist, Philippe Wittel, Falk K. Rüggeberg, Markus PLoS One Research Article In recent architectural research, thin wooden bilayer laminates capable of self-actuation in response to humidity changes have been proposed as sustainable, programmed, and fully autonomous elements for facades or roofs for shading and climate regulation. Switches, humidistats, or motor elements represent further promising applications. Proper wood-adapted prediction models for actuation, however, are still missing. Here, a simple model that can predict bending deformation as a function of moisture content change, wood material parameters, and geometry is presented. We consider material anisotropy and moisture-dependency of elastic mechanical parameters. The model is validated using experimental data collected on bilayers made out of European beech wood. Furthermore, we present essential design aspects in view of facilitated industrial applications. Layer thickness, thickness-ratio, and growth ring angle of the wood in single layers are assessed by their effect on curvature, stored elastic energy, and generated axial stress. A sensitivity analysis is conducted to identify primary curvature-impacting model input parameters. Public Library of Science 2018-10-16 /pmc/articles/PMC6191116/ /pubmed/30325938 http://dx.doi.org/10.1371/journal.pone.0205607 Text en © 2018 Grönquist et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Grönquist, Philippe Wittel, Falk K. Rüggeberg, Markus Modeling and design of thin bending wooden bilayers |
title | Modeling and design of thin bending wooden bilayers |
title_full | Modeling and design of thin bending wooden bilayers |
title_fullStr | Modeling and design of thin bending wooden bilayers |
title_full_unstemmed | Modeling and design of thin bending wooden bilayers |
title_short | Modeling and design of thin bending wooden bilayers |
title_sort | modeling and design of thin bending wooden bilayers |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191116/ https://www.ncbi.nlm.nih.gov/pubmed/30325938 http://dx.doi.org/10.1371/journal.pone.0205607 |
work_keys_str_mv | AT gronquistphilippe modelinganddesignofthinbendingwoodenbilayers AT wittelfalkk modelinganddesignofthinbendingwoodenbilayers AT ruggebergmarkus modelinganddesignofthinbendingwoodenbilayers |