Cargando…
A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest
Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthop...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191144/ https://www.ncbi.nlm.nih.gov/pubmed/30286071 http://dx.doi.org/10.1371/journal.pgen.1007402 |
_version_ | 1783363671944069120 |
---|---|
author | Petratou, Kleio Subkhankulova, Tatiana Lister, James A. Rocco, Andrea Schwetlick, Hartmut Kelsh, Robert N. |
author_facet | Petratou, Kleio Subkhankulova, Tatiana Lister, James A. Rocco, Andrea Schwetlick, Hartmut Kelsh, Robert N. |
author_sort | Petratou, Kleio |
collection | PubMed |
description | Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we focus on the iridophore GRN, where mutant phenotypes identify the transcription factors Sox10, Tfec and Mitfa and the receptor tyrosine kinase, Ltk, as key players. Here we present expression data, as well as loss and gain of function results, guiding the derivation of an initial iridophore specification GRN. Moreover, we use an iterative process of mathematical modelling, supplemented with a Monte Carlo screening algorithm suited to the qualitative nature of the experimental data, to allow for rigorous predictive exploration of the GRN dynamics. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. Our study reveals multiple important regulatory features, notably a sox10-dependent positive feedback loop between tfec and ltk driving iridophore specification; the molecular basis of sox10 maintenance throughout iridophore development; and the cooperation between sox10 and tfec in driving expression of pnp4a, a key differentiation gene. We also assess a candidate repressor of mitfa, a melanocyte-specific target of sox10. Surprisingly, our data challenge the reported role of Foxd3, an established mitfa repressor, in iridophore regulation. Our study builds upon our previous systems biology approach, by incorporating physiologically-relevant parameter values and rigorous evaluation of parameter values within a qualitative data framework, to establish for the first time the core GRN guiding specification of the iridophore lineage. |
format | Online Article Text |
id | pubmed-6191144 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-61911442018-10-25 A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest Petratou, Kleio Subkhankulova, Tatiana Lister, James A. Rocco, Andrea Schwetlick, Hartmut Kelsh, Robert N. PLoS Genet Research Article Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we focus on the iridophore GRN, where mutant phenotypes identify the transcription factors Sox10, Tfec and Mitfa and the receptor tyrosine kinase, Ltk, as key players. Here we present expression data, as well as loss and gain of function results, guiding the derivation of an initial iridophore specification GRN. Moreover, we use an iterative process of mathematical modelling, supplemented with a Monte Carlo screening algorithm suited to the qualitative nature of the experimental data, to allow for rigorous predictive exploration of the GRN dynamics. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. Our study reveals multiple important regulatory features, notably a sox10-dependent positive feedback loop between tfec and ltk driving iridophore specification; the molecular basis of sox10 maintenance throughout iridophore development; and the cooperation between sox10 and tfec in driving expression of pnp4a, a key differentiation gene. We also assess a candidate repressor of mitfa, a melanocyte-specific target of sox10. Surprisingly, our data challenge the reported role of Foxd3, an established mitfa repressor, in iridophore regulation. Our study builds upon our previous systems biology approach, by incorporating physiologically-relevant parameter values and rigorous evaluation of parameter values within a qualitative data framework, to establish for the first time the core GRN guiding specification of the iridophore lineage. Public Library of Science 2018-10-04 /pmc/articles/PMC6191144/ /pubmed/30286071 http://dx.doi.org/10.1371/journal.pgen.1007402 Text en © 2018 Petratou et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Petratou, Kleio Subkhankulova, Tatiana Lister, James A. Rocco, Andrea Schwetlick, Hartmut Kelsh, Robert N. A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest |
title | A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest |
title_full | A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest |
title_fullStr | A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest |
title_full_unstemmed | A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest |
title_short | A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest |
title_sort | systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191144/ https://www.ncbi.nlm.nih.gov/pubmed/30286071 http://dx.doi.org/10.1371/journal.pgen.1007402 |
work_keys_str_mv | AT petratoukleio asystemsbiologyapproachuncoversthecoregeneregulatorynetworkgoverningiridophorefatechoicefromtheneuralcrest AT subkhankulovatatiana asystemsbiologyapproachuncoversthecoregeneregulatorynetworkgoverningiridophorefatechoicefromtheneuralcrest AT listerjamesa asystemsbiologyapproachuncoversthecoregeneregulatorynetworkgoverningiridophorefatechoicefromtheneuralcrest AT roccoandrea asystemsbiologyapproachuncoversthecoregeneregulatorynetworkgoverningiridophorefatechoicefromtheneuralcrest AT schwetlickhartmut asystemsbiologyapproachuncoversthecoregeneregulatorynetworkgoverningiridophorefatechoicefromtheneuralcrest AT kelshrobertn asystemsbiologyapproachuncoversthecoregeneregulatorynetworkgoverningiridophorefatechoicefromtheneuralcrest AT petratoukleio systemsbiologyapproachuncoversthecoregeneregulatorynetworkgoverningiridophorefatechoicefromtheneuralcrest AT subkhankulovatatiana systemsbiologyapproachuncoversthecoregeneregulatorynetworkgoverningiridophorefatechoicefromtheneuralcrest AT listerjamesa systemsbiologyapproachuncoversthecoregeneregulatorynetworkgoverningiridophorefatechoicefromtheneuralcrest AT roccoandrea systemsbiologyapproachuncoversthecoregeneregulatorynetworkgoverningiridophorefatechoicefromtheneuralcrest AT schwetlickhartmut systemsbiologyapproachuncoversthecoregeneregulatorynetworkgoverningiridophorefatechoicefromtheneuralcrest AT kelshrobertn systemsbiologyapproachuncoversthecoregeneregulatorynetworkgoverningiridophorefatechoicefromtheneuralcrest |