Cargando…

The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration

Skeletal muscle regeneration depends on satellite cells. After injury these muscle stem cells exit quiescence, proliferate and differentiate to regenerate damaged fibres. We show that this progression is accompanied by metabolic changes leading to increased production of reactive oxygen species (ROS...

Descripción completa

Detalles Bibliográficos
Autores principales: L'honoré, Aurore, Commère, Pierre-Henri, Negroni, Elisa, Pallafacchina, Giorgia, Friguet, Bertrand, Drouin, Jacques, Buckingham, Margaret, Montarras, Didier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191287/
https://www.ncbi.nlm.nih.gov/pubmed/30106373
http://dx.doi.org/10.7554/eLife.32991
_version_ 1783363698914492416
author L'honoré, Aurore
Commère, Pierre-Henri
Negroni, Elisa
Pallafacchina, Giorgia
Friguet, Bertrand
Drouin, Jacques
Buckingham, Margaret
Montarras, Didier
author_facet L'honoré, Aurore
Commère, Pierre-Henri
Negroni, Elisa
Pallafacchina, Giorgia
Friguet, Bertrand
Drouin, Jacques
Buckingham, Margaret
Montarras, Didier
author_sort L'honoré, Aurore
collection PubMed
description Skeletal muscle regeneration depends on satellite cells. After injury these muscle stem cells exit quiescence, proliferate and differentiate to regenerate damaged fibres. We show that this progression is accompanied by metabolic changes leading to increased production of reactive oxygen species (ROS). Using Pitx2/3 single and double mutant mice that provide genetic models of deregulated redox states, we demonstrate that moderate overproduction of ROS results in premature differentiation of satellite cells while high levels lead to their senescence and regenerative failure. Using the ROS scavenger, N-Acetyl-Cysteine (NAC), in primary cultures we show that a physiological increase in ROS is required for satellite cells to exit the cell cycle and initiate differentiation through the redox activation of p38α MAP kinase. Subjecting cultured satellite cells to transient inhibition of P38α MAP kinase in conjunction with NAC treatment leads to their rapid expansion, with striking improvement of their regenerative potential in grafting experiments.
format Online
Article
Text
id pubmed-6191287
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-61912872018-10-21 The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration L'honoré, Aurore Commère, Pierre-Henri Negroni, Elisa Pallafacchina, Giorgia Friguet, Bertrand Drouin, Jacques Buckingham, Margaret Montarras, Didier eLife Cell Biology Skeletal muscle regeneration depends on satellite cells. After injury these muscle stem cells exit quiescence, proliferate and differentiate to regenerate damaged fibres. We show that this progression is accompanied by metabolic changes leading to increased production of reactive oxygen species (ROS). Using Pitx2/3 single and double mutant mice that provide genetic models of deregulated redox states, we demonstrate that moderate overproduction of ROS results in premature differentiation of satellite cells while high levels lead to their senescence and regenerative failure. Using the ROS scavenger, N-Acetyl-Cysteine (NAC), in primary cultures we show that a physiological increase in ROS is required for satellite cells to exit the cell cycle and initiate differentiation through the redox activation of p38α MAP kinase. Subjecting cultured satellite cells to transient inhibition of P38α MAP kinase in conjunction with NAC treatment leads to their rapid expansion, with striking improvement of their regenerative potential in grafting experiments. eLife Sciences Publications, Ltd 2018-08-14 /pmc/articles/PMC6191287/ /pubmed/30106373 http://dx.doi.org/10.7554/eLife.32991 Text en © 2018, L'honoré et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Cell Biology
L'honoré, Aurore
Commère, Pierre-Henri
Negroni, Elisa
Pallafacchina, Giorgia
Friguet, Bertrand
Drouin, Jacques
Buckingham, Margaret
Montarras, Didier
The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration
title The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration
title_full The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration
title_fullStr The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration
title_full_unstemmed The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration
title_short The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration
title_sort role of pitx2 and pitx3 in muscle stem cells gives new insights into p38α map kinase and redox regulation of muscle regeneration
topic Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191287/
https://www.ncbi.nlm.nih.gov/pubmed/30106373
http://dx.doi.org/10.7554/eLife.32991
work_keys_str_mv AT lhonoreaurore theroleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT commerepierrehenri theroleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT negronielisa theroleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT pallafacchinagiorgia theroleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT friguetbertrand theroleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT drouinjacques theroleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT buckinghammargaret theroleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT montarrasdidier theroleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT lhonoreaurore roleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT commerepierrehenri roleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT negronielisa roleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT pallafacchinagiorgia roleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT friguetbertrand roleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT drouinjacques roleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT buckinghammargaret roleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration
AT montarrasdidier roleofpitx2andpitx3inmusclestemcellsgivesnewinsightsintop38amapkinaseandredoxregulationofmuscleregeneration