Cargando…
A GPU-based algorithm for fast node label learning in large and unbalanced biomolecular networks
BACKGROUND: Several problems in network biology and medicine can be cast into a framework where entities are represented through partially labeled networks, and the aim is inferring the labels (usually binary) of the unlabeled part. Connections represent functional or genetic similarity between enti...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191976/ https://www.ncbi.nlm.nih.gov/pubmed/30367594 http://dx.doi.org/10.1186/s12859-018-2301-4 |
_version_ | 1783363820785238016 |
---|---|
author | Frasca, Marco Grossi, Giuliano Gliozzo, Jessica Mesiti, Marco Notaro, Marco Perlasca, Paolo Petrini, Alessandro Valentini, Giorgio |
author_facet | Frasca, Marco Grossi, Giuliano Gliozzo, Jessica Mesiti, Marco Notaro, Marco Perlasca, Paolo Petrini, Alessandro Valentini, Giorgio |
author_sort | Frasca, Marco |
collection | PubMed |
description | BACKGROUND: Several problems in network biology and medicine can be cast into a framework where entities are represented through partially labeled networks, and the aim is inferring the labels (usually binary) of the unlabeled part. Connections represent functional or genetic similarity between entities, while the labellings often are highly unbalanced, that is one class is largely under-represented: for instance in the automated protein function prediction (AFP) for most Gene Ontology terms only few proteins are annotated, or in the disease-gene prioritization problem only few genes are actually known to be involved in the etiology of a given disease. Imbalance-aware approaches to accurately predict node labels in biological networks are thereby required. Furthermore, such methods must be scalable, since input data can be large-sized as, for instance, in the context of multi-species protein networks. RESULTS: We propose a novel semi-supervised parallel enhancement of COSNet, an imbalance-aware algorithm build on Hopfield neural model recently suggested to solve the AFP problem. By adopting an efficient representation of the graph and assuming a sparse network topology, we empirically show that it can be efficiently applied to networks with millions of nodes. The key strategy to speed up the computations is to partition nodes into independent sets so as to process each set in parallel by exploiting the power of GPU accelerators. This parallel technique ensures the convergence to asymptotically stable attractors, while preserving the asynchronous dynamics of the original model. Detailed experiments on real data and artificial big instances of the problem highlight scalability and efficiency of the proposed method. CONCLUSIONS: By parallelizing COSNet we achieved on average a speed-up of 180x in solving the AFP problem in the S. cerevisiae, Mus musculus and Homo sapiens organisms, while lowering memory requirements. In addition, to show the potential applicability of the method to huge biomolecular networks, we predicted node labels in artificially generated sparse networks involving hundreds of thousands to millions of nodes. |
format | Online Article Text |
id | pubmed-6191976 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-61919762018-10-23 A GPU-based algorithm for fast node label learning in large and unbalanced biomolecular networks Frasca, Marco Grossi, Giuliano Gliozzo, Jessica Mesiti, Marco Notaro, Marco Perlasca, Paolo Petrini, Alessandro Valentini, Giorgio BMC Bioinformatics Research BACKGROUND: Several problems in network biology and medicine can be cast into a framework where entities are represented through partially labeled networks, and the aim is inferring the labels (usually binary) of the unlabeled part. Connections represent functional or genetic similarity between entities, while the labellings often are highly unbalanced, that is one class is largely under-represented: for instance in the automated protein function prediction (AFP) for most Gene Ontology terms only few proteins are annotated, or in the disease-gene prioritization problem only few genes are actually known to be involved in the etiology of a given disease. Imbalance-aware approaches to accurately predict node labels in biological networks are thereby required. Furthermore, such methods must be scalable, since input data can be large-sized as, for instance, in the context of multi-species protein networks. RESULTS: We propose a novel semi-supervised parallel enhancement of COSNet, an imbalance-aware algorithm build on Hopfield neural model recently suggested to solve the AFP problem. By adopting an efficient representation of the graph and assuming a sparse network topology, we empirically show that it can be efficiently applied to networks with millions of nodes. The key strategy to speed up the computations is to partition nodes into independent sets so as to process each set in parallel by exploiting the power of GPU accelerators. This parallel technique ensures the convergence to asymptotically stable attractors, while preserving the asynchronous dynamics of the original model. Detailed experiments on real data and artificial big instances of the problem highlight scalability and efficiency of the proposed method. CONCLUSIONS: By parallelizing COSNet we achieved on average a speed-up of 180x in solving the AFP problem in the S. cerevisiae, Mus musculus and Homo sapiens organisms, while lowering memory requirements. In addition, to show the potential applicability of the method to huge biomolecular networks, we predicted node labels in artificially generated sparse networks involving hundreds of thousands to millions of nodes. BioMed Central 2018-10-15 /pmc/articles/PMC6191976/ /pubmed/30367594 http://dx.doi.org/10.1186/s12859-018-2301-4 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Frasca, Marco Grossi, Giuliano Gliozzo, Jessica Mesiti, Marco Notaro, Marco Perlasca, Paolo Petrini, Alessandro Valentini, Giorgio A GPU-based algorithm for fast node label learning in large and unbalanced biomolecular networks |
title | A GPU-based algorithm for fast node label learning in large and unbalanced biomolecular networks |
title_full | A GPU-based algorithm for fast node label learning in large and unbalanced biomolecular networks |
title_fullStr | A GPU-based algorithm for fast node label learning in large and unbalanced biomolecular networks |
title_full_unstemmed | A GPU-based algorithm for fast node label learning in large and unbalanced biomolecular networks |
title_short | A GPU-based algorithm for fast node label learning in large and unbalanced biomolecular networks |
title_sort | gpu-based algorithm for fast node label learning in large and unbalanced biomolecular networks |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191976/ https://www.ncbi.nlm.nih.gov/pubmed/30367594 http://dx.doi.org/10.1186/s12859-018-2301-4 |
work_keys_str_mv | AT frascamarco agpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT grossigiuliano agpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT gliozzojessica agpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT mesitimarco agpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT notaromarco agpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT perlascapaolo agpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT petrinialessandro agpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT valentinigiorgio agpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT frascamarco gpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT grossigiuliano gpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT gliozzojessica gpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT mesitimarco gpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT notaromarco gpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT perlascapaolo gpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT petrinialessandro gpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks AT valentinigiorgio gpubasedalgorithmforfastnodelabellearninginlargeandunbalancedbiomolecularnetworks |