Cargando…
Predicting bacterial resistance from whole-genome sequences using k-mers and stability selection
BACKGROUND: Several studies demonstrated the feasibility of predicting bacterial antibiotic resistance phenotypes from whole-genome sequences, the prediction process usually amounting to detecting the presence of genes involved in antibiotic resistance mechanisms, or of specific mutations, previousl...
Autores principales: | Mahé, Pierre, Tournoud, Maud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192184/ https://www.ncbi.nlm.nih.gov/pubmed/30332990 http://dx.doi.org/10.1186/s12859-018-2403-z |
Ejemplares similares
-
A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events
por: Jaillard, Magali, et al.
Publicado: (2018) -
A large scale evaluation of TBProfiler and Mykrobe for antibiotic resistance prediction in Mycobacterium tuberculosis
por: Mahé, Pierre, et al.
Publicado: (2019) -
Interpreting k-mer–based signatures for antibiotic resistance prediction
por: Jaillard, Magali, et al.
Publicado: (2020) -
Large-scale machine learning for metagenomics sequence classification
por: Vervier, Kévin, et al.
Publicado: (2016) -
Whole-Genome k-mer Topic Modeling Associates Bacterial Families
por: Borrayo, Ernesto, et al.
Publicado: (2020)