Cargando…
Bayesian data integration for quantifying the contribution of diverse measurements to parameter estimates
MOTIVATION: Computational models in biology are frequently underdetermined, due to limits in our capacity to measure biological systems. In particular, mechanistic models often contain parameters whose values are not constrained by a single type of measurement. It may be possible to achieve better m...
Autores principales: | Thijssen, Bram, Dijkstra, Tjeerd M H, Heskes, Tom, Wessels, Lodewyk F A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192208/ https://www.ncbi.nlm.nih.gov/pubmed/29069283 http://dx.doi.org/10.1093/bioinformatics/btx666 |
Ejemplares similares
-
BCM: toolkit for Bayesian analysis of Computational Models using samplers
por: Thijssen, Bram, et al.
Publicado: (2016) -
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference
por: Thijssen, Bram, et al.
Publicado: (2020) -
Quantifying uncertainty in brain network measures using Bayesian connectomics
por: Janssen, Ronald J., et al.
Publicado: (2014) -
Non-parametric synergy modeling of chemical compounds with Gaussian processes
por: Shapovalova, Yuliya, et al.
Publicado: (2022) -
Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates
por: Hinne, Max, et al.
Publicado: (2015)