Cargando…
Chromatin accessibility prediction via a hybrid deep convolutional neural network
MOTIVATION: A majority of known genetic variants associated with human-inherited diseases lie in non-coding regions that lack adequate interpretation, making it indispensable to systematically discover functional sites at the whole genome level and precisely decipher their implications in a comprehe...
Autores principales: | Liu, Qiao, Xia, Fei, Yin, Qijin, Jiang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192215/ https://www.ncbi.nlm.nih.gov/pubmed/29069282 http://dx.doi.org/10.1093/bioinformatics/btx679 |
Ejemplares similares
-
Predicting enhancers with deep convolutional neural networks
por: Min, Xu, et al.
Publicado: (2017) -
Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding
por: Min, Xu, et al.
Publicado: (2017) -
DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers
por: Chen, Shengquan, et al.
Publicado: (2021) -
Deep Hybrid Convolutional Neural Network for Segmentation of Melanoma Skin Lesion
por: Yang, Cheng-Hong, et al.
Publicado: (2021) -
Multiscale Hybrid Convolutional Deep Neural Networks with Channel Attention
por: Yang, Hua, et al.
Publicado: (2022)