Cargando…

Implicit memory for words heard during sleep

When we fall asleep, our awareness of the surrounding world fades. Yet, the sleeping brain is far from being dormant and recent research unraveled the preservation of complex sensory processing during sleep. In wakefulness, such processes usually lead to the formation of long-term memory traces, bei...

Descripción completa

Detalles Bibliográficos
Autores principales: Andrillon, Thomas, Kouider, Sid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192377/
https://www.ncbi.nlm.nih.gov/pubmed/30356955
http://dx.doi.org/10.1093/nc/niw014
Descripción
Sumario:When we fall asleep, our awareness of the surrounding world fades. Yet, the sleeping brain is far from being dormant and recent research unraveled the preservation of complex sensory processing during sleep. In wakefulness, such processes usually lead to the formation of long-term memory traces, being it implicit or explicit. We examined here the consequences upon awakening of the processing of sensory information at a high level of representation during sleep. Participants were instructed to classify auditory stimuli as words or pseudo-words, through left and right hand responses, while transitioning toward sleep. An analysis of the electroencephalographic (EEG) signal revealed the preservation of lateralized motor activations in response to sounds, suggesting that stimuli were correctly categorized during sleep. Upon awakening, participants did not explicitly remember words processed during sleep and failed to distinguish them from new words (old/new recognition test). However, both behavioral and EEG data indicate the presence of an implicit memory trace for words presented during sleep. In addition, the underlying neural signature of such implicit memories markedly differed from the explicit memories formed during wakefulness, in line with dual-process accounts arguing for two independent systems for explicit and implicit memory. Thus, our results reveal that implicit learning mechanisms can be triggered during sleep and provide a novel approach to explore the neural implementation of memory without awareness.