Cargando…
Infrared Camera-Based Non-contact Measurement of Brain Activity From Pupillary Rhythms
Pupillary responses are associated with affective processing, cognitive function, perception, memory, attention, and other brain activities involving neural pathways. The present study aimed to develop a noncontact system to measure brain activity based on pupillary rhythms using an infra-red web ca...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192458/ https://www.ncbi.nlm.nih.gov/pubmed/30364205 http://dx.doi.org/10.3389/fphys.2018.01400 |
Sumario: | Pupillary responses are associated with affective processing, cognitive function, perception, memory, attention, and other brain activities involving neural pathways. The present study aimed to develop a noncontact system to measure brain activity based on pupillary rhythms using an infra-red web camera. Electroencephalogram (EEG) signals and pupil imaging of 70 undergraduate volunteers (35 female, 35 male) were measured in response to sound stimuli designed to evoke arousal, relaxation, happiness, sadness, or neutral responses. This study successfully developed a real-time system that could detect an EEG spectral index (relative power: low beta in FP1; mid beta in FP1; SMR in FP1; beta in F3; high beta in F8; gamma P4; mu in C4) from pupillary rhythms using the synchronization phenomenon in harmonic frequency (1/100 f) between the pupil and brain oscillations. This method was effective in measuring and evaluating brain activity using a simple, low-cost, noncontact system, and may be an alternative to previous methods used to evaluate brain activity. |
---|